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Abstract

Genealogies are promising sources for addressing many questions in historical and

kinship demography. So far, an incomplete understanding of the biases that affect their

representativeness has hindered their full exploitation. Here, we report on a series of

experiments on synthetic populations aimed at understanding how different sources of

bias in ascendant genealogies can affect the accuracy of demographic estimates. We use

the SOCSIM demographic microsimulation program and data for Sweden from the Hu-

man Fertility Collection (1751-1890), the Human Fertility Database (1891-2022), and

the Human Mortality Database (1751-2022). We analyze three sources of bias: selec-

tion in direct lineages, incomplete reconstruction of family trees, and missing information

on some subpopulations. We evaluate their effect by comparing common demographic

measures estimated from ‘fully-recorded’ and ‘bias-infused’ synthetic populations. Our

results show that including only direct lineages leads to an underestimation of Total Fer-

tility Rate (TFR) (c.a. −39% or 0.61 times lower) before the onset of fertility decline,

and an overestimation of life expectancy at birth (e0) over the first two centuries (c.a.

+42.2%). However, after adding selected collateral kin, the accuracy of the estimates

improves: TFR is underestimated by only −0.11% during the first century and e0 is

overestimated by only +1.5% over the whole period.

Keywords: genealogies, microsimulation, biases, historical demography, kinship

Introduction

Long-term analysis of demographic dynamics, especially considering generational and

kinship relationships is usually challenging and data demanding. Questions involving

inter- (i.e., between) and multi- (i.e., many) generational perspectives often require data

on vital events and kinship networks spanning decades or centuries. For instance, ex-

amining the familial transmission of demographic outcomes such as longevity requires

long historical data series including kinship information, that allow to consider the life-
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time of multiple generations. These data requirements can limit the scope of inter-

and multi-generational studies to specific time periods or geographic areas for which

such data sources exist. However, unique opportunities for population research have

recently emerged thanks to the availability of novel data sources driven by the Data

Revolution (Alburez-Gutierrez et al., 2019; Kashyap, 2021), coupled with the increasing

use of computationally-intensive tools such as microsimulation (Zagheni, 2015). Novel

data sources, including those resulting from digitization and crowd-sourcing of historical

records, can provide opportunities to study long-term dynamics, whose analysis has often

been limited by the lack of (good) historical data. Thus, comprehending the potential

and constraints of available sources, as well as appropriate methods for their use, can

help broaden the scope of research in the fields of historical and kinship demography.

Genealogies hold great promise for this type of analysis, as they could enable us to link

human populations over time, sometimes across space, and across generations. However,

as they often suffer from problems of coverage and representativeness (Dupaquier, 1993),

a deep understanding of their characteristics, quality problems, and biases is essential for

informed use in demographic studies. Missing information issues include dates of birth

and death and the omission of women, children who died at an early age and people who

brought dishonor to the family (Hollingsworth, 1976; Zhao, 2001). Moreover, genealo-

gies are usually records of surviving patrilineal lineages, which often experience better

demographic conditions and show a higher sex ratios than the population as a whole.

Hence, extinct and matrilineal lineages are often omitted from them (Zhao, 2006). In

addition to demographic selectivity, which can lead to underestimation of mortality and

overestimation of fertility, individuals with high socioeconomic status are more likely to

be included in genealogies (Campbell and Lee, 2002).

Large online genealogical databases have recently emerged through the collabora-

tive efforts of users of genealogical sites, such as Family Search, Geni and WikiTree

(Charpentier and Gallic, 2020). These databases have been used to analyze patterns
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in mortality (Gavrilova and Gavrilov, 2007; Kaplanis et al., 2018; Minardi et al., 2023),

morbidity (Rawlik et al., 2019) and fertility (Blanc, 2022a,b; Hsu et al., 2021). Nev-

ertheless, besides the problems of genealogies mentioned above, online databases are

non-representative samples of real-world family structures (Chong et al., 2022; Stelter

and Alburez-Gutierrez, 2022) and further analysis is needed to improve the accuracy and

reliability of the measures derived from these databases.

Genealogies are traditionally divided into ascendant and descendant (Bideau and

Poulain, 1984; Jette and Charbonneau, 1984; Oeppen, 1999). In both cases, the starting

point is an individual so-called ‘ego’, but while the former traces their ancestors backwards

in time, the latter records their family trees prospectively. Both types of genealogies may

or may not include collateral kin (i.e., those relatives who share a common ancestor but

are not in a direct line), and have both advantages and limitations. Descendant genealo-

gies have been widely used in historical demography, because they can be used directly

in the family reconstitution method. However, they are often limited in number and

size, and restricted to small areas with available parish or population registers (Bideau

and Poulain, 1984; Jette and Charbonneau, 1984; Dupaquier, 1993). Here, we focus on

ascendant genealogies which, despite the biases inherent in their nature, are more likely

to be found outside the limited number of countries with high-quality records including

kinship ties and have also become more available through online genealogical databases.

Demographic microsimulation has proven useful for investigating long-term kinship

patterns (Murphy, 2011) as well as for evaluating historical data and assessing the relia-

bility and bias of genealogies (Oeppen, 1999; Zhao, 1994, 2001, 2006) and family recon-

stitutions (Ruggles, 1992). Despite some constraints of microsimulation models, such as

limitations when considering demographic similarities within the same kin group (Rug-

gles, 1993), or the dependence of the demographic events (and their timing) on the

assumptions and input parameters (Zhao, 2006), they remain a powerful tool for analyz-

ing the effects of selection and under-representation issues in genealogies. For instance,
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Zhao (2001) showed that the male lineages recorded in Chinese genealogies appear to be

quite similar to the surviving patrilineages identified in the outputs of a microsimulation,

giving an idea of the patterns of selection in genealogies and the differences with the

demographic rates calculated for the whole population.

Since the possibility to infer demographic dynamics from genealogical data is affected

by their nature and representativeness, it is essential to assess the size and effect of

their biases before drawing conclusions for the general population. In this research, we

conduct a series of experiments on synthetic populations, simulated using the SOCSIM

demographic microsimulation program (Hammel et al., 1976), and taking Sweden (1751-

2022) as a case study. We adopt the perspective of a group of genealogists to replicate

the construction of ascending family trees and then evaluate the effect of some typical

sources of bias in such trees on demographic measures. More specifically, we aim to un-

derstand how these sources of bias affect the accuracy of fertility and mortality

estimates derived from ascendant genealogies. Our analysis seeks to contribute to

a better understanding of the possibilities and limitations of using genealogies for demo-

graphic research.

Data and Methods

Demographic microsimulation

We run demographic microsimulations for Sweden (1751-2022) using the SOCSIM

microsimulation program to obtain ‘fully-recorded’ synthetic populations, and thus in-

formation on vital events and kinship relationships for every single simulated individual

who was ever alive. SOCSIM is an open-source demographic microsimulation program,

originally developed at the University of California Berkeley (Hammel et al., 1976), and

written in C programming language. It has been used for decades in demographic re-

search to address issues such as kin availability and kin loss (Murphy, 2004, 2011; Verdery

and Margolis, 2017; Zagheni, 2011), among others. The microsimulator takes as input

4



an initial population file (with information on each individual’s sex and date of birth)

and monthly age-specific fertility rates and age-specific probabilities of death that hold

over a given period for individuals of a particular sex, group, and marital status (married,

single, divorced, widowed). Fertility rates can be parity-specific, but are not in this study.

During the simulation, SOCSIM schedules and executes vital demographic events (births,

marriages and deaths) for each ‘living’ simulated individual in the initial population and

their descendants.

A brief description of how the microsimulator works is given in Mason (2016) and

summarized below. At the beginning of each simulation segment (i.e., when the demo-

graphic rates or societal constants change) or month, SOCSIM schedules an event for each

living individual to be executed at a future date. Only one event can be scheduled for

each individual at any one time. After a person’s event has been executed (except in the

case of a death) or a change in their marital status or parity, a new event is scheduled for

that person. To determine the next event to be scheduled for each individual, SOCSIM

generates a random waiting time for each event for which each individual is at risk, con-

sidering the sex, age, group, and marital status specific rates. Once all potential events

have randomly generated waiting times, the event with the shortest waiting time is se-

lected and scheduled. Hence, the event competition follows a competing risk framework,

wherein the probability of experiencing each event for which the individual of a given

sex, age, marital status is at risk is independent of all others. All the events scheduled

for a given month are executed in random order. SOCSIM then increments the month

and repeats the event execution. At the end of the simulation, SOCSIM writes an output

population file containing information about each individual who has ever lived and a

marriage file containing information about each marriage generated during the simulation.

We run simulations from within R using the ‘rsocsim’ R-package (Theile et al., 2023)

and input rates from the Human Fertility Collection (HFC) (1751-1890), the Human Fer-

tility Database (HFD) (1891-2022) and the Human Mortality Database (HMD) (1751-
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2022). The last two are retrieved via the ‘HMDHFDplus’ R-package (Riffe, 2015). To

minimize the effects of microsimulation stochasticity without significantly compromising

computational time, we run 10 simulations with the same initial population and input

rates but different randomly generated seeds. This allows us to perform the experiments,

that are explained in the next subsection, on more than one synthetic population and then

average the results. As done in previous studies using SOCSIM, we first run the simulator

for 100 years using the age-specific rates for 1751 to produce a stable age structure. This

results in populations of about 15,000 individuals in 1751, which are then subjected to

the corresponding annual rates for 1751-2022, resulting in synthetic populations of about

100,000 living individuals in 2022. Due to the lack of accurate age-specific marriage rates

by sex for the entire period, we use the directive ‘marriage after childbirth’ in ‘rsocsim’

to create a marriage event and select a living unmarried spouse whenever a previously

unmarried female gives birth. Following (Alburez-Gutierrez et al., 2021), spouses for each

woman are chosen from all living single men to minimize the squared difference between

the observed distribution of ‘groom’s age - bride’s age’ and a normal distribution with a

mean of two and a standard deviation of three.

To assess the accuracy of our microsimulations, we estimate period Age-Specific Fer-

tility Rates (ASFR) and Age-Specific Mortality Rates (ASMR), and their corresponding

summary measures, Total Fertility Rate (TFR) and life expectancy at birth (e0), based

on the 10 SOCSIM outputs to verify that they are close to the input rates and derived

measures. Figure A1 in the Appendix compares the estimates of ASFR, ASMR, TFR

and e0 derived from the simulation inputs (i.e., HFC/ HFD and HMD) and outputs. As

expected in a stochastic process, there is still some variation around the reference value

(input rates), especially when fertility rates are higher (distant periods) and mortality

rates are lower (recent periods, for infant and child mortality). This can be explained

by the fact that the initial populations are smaller compared to the final populations,

after the simulated populations have grown. Nevertheless, the gaps are reduced when

the summary measures (TFR and e0) and the average of the 10 simulations for each
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measure are calculated. We chose to run 10 simulations as that represents an appropriate

compromise between the computational time needed to run simulations and the level of

stochasticity that remains after averaging across simulations.

Experiments on synthetic populations

We carry out a series of experiments on synthetic populations to assess the potential

effect on demographic measures of some typical sources of bias in ascendant genealogies.

Tracing family trees backwards, as is done in ascendant genealogies, relies mostly on lin-

eage survival, i.e., the descendants of given ancestors must have survived to the time of

genealogical reconstruction. This is a structural feature of ascendant genealogies. There-

fore, throughout the experiments, we adopt the perspective of a group of hypothetical

genealogists to analyze three main sources of bias: 1) the selection on direct lineages,

2) the incomplete reconstruction of family trees, and 3) the missing information

on some subpopulations.

To evaluate the three sources of bias, we replicate the process of reconstructing the

family trees of a group of individuals alive at the end of each simulation: our population

of hypothetical genealogists. From each simulation output, we randomly select a sample

of 10% of individuals aged 18 or older who are alive at the end of 2022. These indi-

viduals, hereafter called the ‘genealogists’, are the starting point for reconstructing the

family trees for all of the experiments. We then merge the family trees of all the geneal-

ogists from each simulation, to obtain the ‘genealogical subsets’ from each experiment,

i.e., those that replicate each source of bias.

We assess the size and effect of the three sources of bias, by comparing common demo-

graphic measures estimated from the ‘fully-recorded’ synthetic population, used here as

a benchmark, and the ‘bias-infused’ genealogical subsets. As measures of period fertility

and mortality, we include: ASFR, ASMR, TFR and e0. We compute these demographic

measures based on the ‘bias-infused’ genealogical subsets and compare the estimates with
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those derived from the whole ‘fully-recorded’ population. We follow the same approach

for all sources of bias, which are explained in more detail below; see Table 1 for a sum-

mary of the experiments. To minimize the effects of microsimulation stochasticity, we

run all the experiments over each of the 10 simulations, calculate the output demographic

measures from both the ‘bias-infused’ and the whole ‘fully-recorded’ populations and then

average the results. As a summary measure of the bias, for each simulation, we calculate

the absolute difference between the genealogical subsets and the whole simulation, and

then average the results to obtain the absolute and relative means of the differences.

The first source of bias arises from the fact that tracing only direct lineages in-

volves selection, since direct ancestors (i.e., those related only through parent-child

relationships) must have reproduced, and thus the childless are excluded by definition.

In the first experiment, we trace all direct ancestors up to the 9th generation (e.g., parents,

grandparents, great-grandparents, ..., 6x great-grandparents) of the genealogists. Since

more than one descendant of a lineage may have survived to the time of genealogical

reconstruction (in our case, the end of 2022), some common ancestors may be included

in more than one genealogy, leading to duplicates when the family trees of multiple ge-

nealogists are merged. Since duplicates are a common problem in genealogical data, we

compute demographic measures using the subset of only direct ancestors both with and

without duplicates and compare them with estimates derived from the whole simulated

population, to evaluate the effect not only of demographic selection but also of duplicates.

The second source of bias is related to the fact that family trees reconstructed

by genealogists are often incomplete due to limited knowledge of relatives or the

choice of whom to include. Hence, the extent and complexity of the kinship network

considered in genealogies may vary across individuals and societies over time. In the first

experiment, we limited the genealogical reconstruction to the (up to 510) direct ancestors

of the genealogists. However, some individuals who are not in their direct ancestral line,

but are related through collateral kinship relationships (i.e., those who descend from a
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common ancestor but are not in a direct blood line, such as siblings or aunts/uncles,

etc.) may be omitted from a family tree. We also analyze the effect of including in the

genealogies some types of collateral kin in addition to direct ancestors. Starting

from the genealogists, we trace their own siblings, aunts/uncles and first cousins, as well

as the siblings of their direct ancestors up to the 8th generation (i.e., great-aunts/uncles,

(...), 6x-great-aunts/uncles) (see Table 1 for the selected kin types). We gradually add

one more kin type to the genealogical subset from each simulation, but for readability

only present the results with all selected kin types in the main text. In this experiment,

we remove the duplicates created after merging the family trees of multiple genealogists.

We compute the defined demographic measures from the subsets including the collateral

kin and compare them to the estimates derived from the whole simulated population.

The third source of bias is related to missing information on some subpopula-

tions who may be forgotten or omitted when reconstructing a family tree, such as early

deceased children and unmarried/childless women. This could lead to underrepresenta-

tion of these subpopulations in genealogies compared to their actual proportion in a given

population. We examine the effect on demographic estimation of omitting a percentage

of a) early deceased children and b) childless women from the most complete genealogical

subset of Experiment 2, i.e., including all direct ancestors and collateral kin, hereafter

referred to as the ‘extended genealogy’, (see Table 1 for the types of kin included). We

follow a similar approach for both subpopulations. For children (Experiment 3A), we

randomly remove, from the extended genealogy, a proportion of those who died before

the age of 5, allowing for 25%, 50%, 75%, and 100% omissions over the entire period

(1751-2022). For childless women (Experiment 3B), which are the same as unmarried

women in our simulation setup, we randomly remove, from the extended genealogy, 25%,

50%, 75%, and 100% of all women who survived to at least reproductive ages (15) and

had no children. We remove the duplicates from the trees of multiple genealogists, com-

pute the demographic measures based on the subsets with omitted subpopulations and

compare them to the estimates derived from both the whole simulation and the extended
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genealogy.

Results

Through the series of experiments described above, we evaluate the potential effect of

three sources of bias in ascendant genealogies on measures of period fertility and mortal-

ity. We run all the experiments independently for each of the 10 simulations, calculate

the demographic measures for each subset from each simulation, and then average the

results. For readability, we present here the mean measures derived either from the

whole simulated populations or from the genealogical subsets created for each of the

experiments.

Experiment 1. Selection on direct lineages

In the first experiment, we evaluate the bias of selection in direct lineages by com-

paring the genealogical subsets of direct ancestors reconstructed up to the 9th generation

with the whole simulated populations. For women in Sweden, Figure 1 compares the age-

specific fertility and mortality rates in 1900-1905, taken as an example from the middle

of the period, (panels a and b), and the evolution of the summary measures (TFR and

e0) over the whole period (panels c and d) from the different subsets. Figures compar-

ing the 1900-1905 age-specific estimates with earlier (1800-1805) and more recent years

(2000-2005) are provided in Appendix A2.

Regarding age-specific fertility rates, panel a of Figure 1 suggests that the estimates

from the genealogical subsets of direct ancestors (lines with squares and dots) are lower

than those from the whole simulation (lines without shapes). Since these subsets include

only the direct ancestors of the genealogists, collateral kin and especially those without

descent are underrepresented in this type of genealogy. Thus, mothers appear to have

had fewer children than they actually gave birth to, since the ancestors’ siblings are not

included in the tree of a given genealogist. In addition, the estimates for all ages from
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the genealogical subset with duplicates (lines with squares) are lower than those from

the subset without duplicates (lines with dots). This is more remarkable in the most dis-

tant periods (see Appendix A2). The number of possible duplicates is likely to increase

as we go back in time, since more distant ancestors are likely to be duplicated in more

genealogies than more recent ancestors. Thus, although the birth of a given ancestor

may be counted in more than one genealogy - creating duplicates in the numerator -

female ancestors of reproductive age in the same year of birth of such an ancestor may be

overcounted more times, resulting in a greater number of duplicates in the denominator.

The earliest birth dates of females from earlier generations could increase the likelihood

of being included in multiple genealogies, which could explain the greatest underesti-

mation of fertility in the genealogical subset with duplicates, especially as we go back

in time. In terms of timing, the age distribution is close to that from the whole simu-

lation, yet fertility peaks at lower ages (25-30) in the genealogical subsets with duplicates.

Looking at the fertility summary measure (i.e., TFR), panel c of Figure 1 shows

a potential underestimation of fertility from genealogies of only direct ancestors (blue

line with squares and olive line with dots) throughout most of the period. Estimates

from the genealogical subset with duplicates are only slightly higher (1 to 10%) than the

whole simulation for a few years in the 1930s, when fertility already reached a very low

level. However, the difference between the two subsets of direct ancestors and the whole

simulation changes over time, with the overall gap being larger before the 20th century,

when fertility was at its highest level (a fluctuating TFR but always above 4 children

per women). During that period, the TFR is underestimated by between 1.85 and 3.96

children per woman in the genealogical subset with duplicates and by between 1.23 and

2.53 in the genealogical subset without duplicates. Before the fertility decline, including

only direct ancestors seems to have a larger effect on the summary measure (TFR): on

average, -70.5% and -39% of the whole simulation value in the genealogical subsets with

and without duplicates, respectively. When considering high fertility periods, the likely

underreporting of the actual number of births in the genealogies of direct ancestors, due
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to the exclusion of collateral kin and without-descent ancestors, seems to be more pro-

nounced as the real number of births per woman was also higher. Otherwise, births to

mothers belonging to lineages that have not survived to the present will not be included

in this or subsequent experiments, which could also lead to an underestimation of fertility

in ascendant genealogies.

As for age-specific mortality, the estimates derived from both genealogical subsets of

direct ancestors, with and without duplicates, are relatively close to each other (lines

with squares and dots in panel b of Figure 1). Thus, the inclusion of duplicates in the

data does not seem to have much effect on the age distribution of deaths. In addition,

estimates from genealogies of direct ancestors are very close to the estimates for the whole

simulation after age 35. This pattern also holds for earlier and more recent years (see

Appendix A2), although the age at which the gap begins to close appears to decrease over

time. This suggests that, for adult and old age, the shape of the mortality curve is not

strongly biased by deriving the measures from direct ascendant genealogies. Neverthe-

less, infant, child and young adult mortality cannot be accurately estimated from these

genealogical subsets, since there are no deaths before age 15 and those between ages 15

and 35 are underestimated. In the last century, there are no deaths before age 20. This

can be explained by the fact that direct ancestors must have survived to reproductive

age to be the ancestors of some of the genealogists.

Considering now the effect of omitting early deaths on the summary measure of mor-

tality (i.e., e0), panel d of Figure 1 suggests a clear overestimation of life expectancy at

birth until the middle of the last century (here, 1948), ranging for females from almost no

bias (0.6 and 0.33 years) to 46.75 and 44.75 years higher in 1773 for the subsets with and

without duplicates, respectively. This corresponds on average to +44.5% and +42.2%

with respect to the e0 estimated from the whole simulation in the genealogical subsets

with and without duplicates, respectively. However, it shows a slight underestimation

from then on, reaching -2.64 and -2.48 years in 1992 for the subsets with and without
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duplicates, with respect to the estimates from the whole simulation. This change in the

direction of the bias from overestimation to underestimation may be related to the fact

that the burden of infant and child mortality - which is not captured in direct ascendant

genealogies - had a greater positive impact on life expectancy estimates in past centuries

than in more recent periods, when improvements in mortality are mostly associated with

old-age mortality.

Experiment 2. Incomplete reconstruction of family trees

In our second experiment, we examine the bias resulting from the incomplete re-

construction of family trees, by examining the inclusion of selected collateral kin in a

genealogical subset of direct ancestors. Although we include some relatives from the

same generation as the genealogists’, such as siblings and cousins, the majority of the

family tree belongs to past generations. Therefore, demographic events corresponding to

more recent years are still partially covered by this extension of an ascendant genealogy.

For the sake of readability, we compare here the estimates from the genealogical subsets

of only direct ancestors, direct ancestors with all selected collateral kin, and the whole

simulated population. For women in Sweden, Figure 2 compares age-specific fertility and

mortality rates in 1900-1905, taken as a mid-point example, and the evolution of the

summary measures (TFR and e0) over the whole period. Figures comparing the esti-

mates derived from the subsets that gradually add one kin type (e.g., direct ancestors

plus siblings or direct ancestors plus siblings and aunts/uncles) are provided in Appendix

A3 and A4.

With respect to age-specific fertility, panel a of Figure 2 shows that the estimates from

the genealogical subsets with only direct ancestors and those together with collateral kin

(lines with dots and diamonds) are lower than the estimates from the whole simulation

(lines without shapes). However, after including all selected types of collateral kin (see

Table 1 for details), the estimates become closer to those derived from the whole simula-

tion, both in terms of level and timing. The gap appears to narrow as we include more
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collateral ancestors and go back in time (see Appendix A3). The remaining underestima-

tion of fertility at all ages, especially for the most recent years, may be due to the types

of kin included in an ascendant genealogy. Here only the births of the genealogists and

their siblings or first cousins and, for earlier generations, of the genealogists’ direct ances-

tors and their siblings, but not of the latter descendants, are included in the genealogical

subset.

This trend could also be observed over time, see panel c of Figure 2. Estimates of TFR

based on genealogies including collateral kin (purple line with diamonds) are now closer

to the estimates from the whole simulation during the first century of analysis (i.e., 5 to

8 generations backward), implying only an underestimation of −0.11 children per woman

(or a reduction of −0.11% in TFR). After that, the gap with the whole simulation starts

to grow progressively until it reaches −1.43 children per woman in 2022 (or a reduction of

−0.92%) compared to the whole simulation. TFR from genealogies that include selected

collateral kin are likely to be more accurate for the earliest periods, since the number of

direct ancestors increases with each generation backward, and the number of their sib-

lings (x-great-uncles) is also likely to increase due to high fertility levels in past centuries.

However, the underestimation of fertility progressively increases in recent years, because

the types of relatives that contribute to the numerator of the fertility rates (collateral and

descendant kin from recent generations, such as children, nieces and nephews) cannot be

captured under this scope of an ascendant genealogy. The differences in the accuracy

of the estimates as an additional type of kin is progressively included are illustrated in

Figure A4 in the Appendix.

Regarding age-specific mortality, the estimates for adult and old-age mortality from

the genealogical subsets with only direct ancestors and those together with collateral kin

(lines with dots and diamonds) are quite similar, see panel b of Figure 2. This also holds

for earlier and more recent periods (see Figure A3 in the Appendix). However, the es-

timates from the genealogical subset that includes collateral kin are now much closer in
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terms of level and timing to the estimates from the whole simulation, even for infant and

young age mortality which are nonexistent in the subset of direct ancestors. Although the

estimates are slightly lower at early ages, the inclusion of collateral kin in the genealogical

reconstruction improves the estimation of early deaths.

The inclusion of collateral kin also affects the summary measure of mortality (e0). As

shown in panel d of Figure 2, estimates of life expectancy at birth from the genealogical

subset with selected collateral kin, become very close to those derived from the whole

simulation over the entire period, although the former are still slightly higher, resulting in

an overall overestimation of 0.7 years or +1.5%. Therefore, the accuracy of demographic

estimates based on genealogies improves significantly after the inclusion of all selected

collateral kin, as each generation backward provides progressively more information about

the demographic events of each period when the ancestors’ siblings are included. A

comparison of the estimates that progressively include an additional type of relative from

each generation backward is illustrated in Figure A4 in the Appendix.

Experiment 3. Missing information on some subpopulations

In our third experiment, we examine the bias associated with missing information on

two types of relatives who are likely to be omitted from genealogies: children who died at

an early age and childless women. We analyze the effects of omitting both subpopulations

separately using a similar approach, but do not consider their combination. Figures 3

and 4 compare, for women in Sweden, age-specific fertility and mortality rates in 1900-

1905, taken as mid-point example, and the evolution of the summary measures (TFR

and e0) over the whole period, derived after omitting different proportions of children

who died before age 5 or childless women, respectively. For readability, we show only the

estimates with 25% and 100% of omission. We compare the estimates with omission to

those derived from both the whole simulation (used as a benchmark) and the ‘extended

genealogy’ with all direct ancestors and collateral kin, which is still slightly biased as

explained in the second experiment. For both subpopulations, removing information bi-
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ases the estimates in the same direction, but the magnitude is significantly larger when

omitting early deceased children. For the latter, we also explore using a threshold of age

1, but the results (not included here) show very similar patterns to those obtained using

the threshold of age 5, except for the age-specific mortality rates below the age of 1 or

5. Figures comparing the age-specific estimates from 1900-1905 with earlier (1800-1805)

and more recent years (2000-2005) for each subpopulation are provided in Appendix A5

and A6.

On the one hand, Figure 3 compares the estimates derived from omitting children

who died before age 5. Regarding fertility, panel a of Figure 3 shows that the age-specific

rates from the genealogical subsets with omitted early deceased children are lower than

those from the extended genealogy and the whole simulation (lines with diamonds and

no shapes), with the bias increasing as the percentage of omission increases, and that

the age distribution is almost unaffected. This is true during periods of high fertility and

mortality, although the gap with the extended genealogy is almost imperceptible when

infant and child mortality is very low (more recent years).

Looking at the changes in the summary measure over time, as shown in panel c of Fig-

ure 3, the further back in time, the greater the effect of omitting early deceased children

on the underestimation of fertility, which increases proportionally with to the percentage

of omission, especially before the 20th century, when both fertility and under-5 mortality

were high in Sweden. Before that, a 25% omission of early-deceased children leads on

average to an underestimation of −0.41 children per woman (or a reduction of −9.2%

in the TFR), while a 100% of omission leads on average to an underestimation of −1.25

children per woman (or a reduction of −27.76% in the TFR). Since under-five mortality

was particularly high in earlier centuries, and in the case of Sweden began to decline

from the 18th century onward, while going back in time, a greater number of children

ever born would be missing if those who died at an early age were omitted from the ge-

nealogies. From the 20th century on, the gap to the extended genealogy begins to close,
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being minimal in the last decades.

For mortality, as expected, the age-specific estimates are lower only for ages 0-1 and

1-5, being non-existent with 100% omission (see panel b of figure 3). This also holds for

earlier and more recent years (see Appendix A5). Nevertheless, the omission of these early

deceased children actually has a large effect on the overestimation of life expectancy at

birth (e0) (see panel d of Figure 3). Again, the effect of omitting children who died early

on the overestimation of e0 increases significantly going back in time, and also increases

with the proportion of omission. A 25% omission of early-deceased children can lead to

an overestimation of e0 by up to 4.74 years (i.e., +20.52%), while a 100% omission to an

overestimation of e0 by up to 21.5 years (i.e., +95.5%).

On the other hand, Figure 4 compares the estimates obtained by omitting childless

women. For fertility, the effect of the omission on age-specific rates (panel a of Figure

4) is quite similar to that of early deceased children, with estimates lower than those

from the extended genealogy and the whole simulation in past centuries, though the gap

with the extended genealogy is almost nonexistent in most recent years. Again, the age

distribution is unaffected.

However, the effect on the fertility summary measure over time shows a slightly differ-

ent trend than for the early-deceased children (see panel c of figure 4). Compared to the

extended genealogy, omitting a larger proportion of childless women (lighter colors) led

to a slightly larger underestimation of fertility until the 1910s (when the TFR was above

3 children per women) and a slightly larger overestimation for some decades afterwards.

For recent decades, the omission has almost no effect, but as discussed above, fertility

estimates are already lower in those years, due to the the types of relatives included in

the extended genealogy. However, the estimates with omitted childless women are always

lower than the whole simulation, leading on average to −0.33 children per woman with

25% of omission (or a reduction of −14% in the TFR) and −0.34 children per woman
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with 100% of omission (or a reduction of −13.8% in the TFR).

As for mortality, the age-specific estimates are lower than those from the whole sim-

ulation and the extended genealogy only for ages 15-35 (see panel b of figure 4). This

holds not only for 1900-1905, but also for previous and more recent centuries (see Ap-

pendix A6). Nevertheless, the omission of childless women has relatively little effect on

the overestimation of life expectancy at birth (e0), which increases slightly as larger pro-

portions of childless women are omitted (see panel d of figure 4). Over the whole period,

a 25% of omission of childless women leads to an overestimation of e0 by up to 2.15 years

(i.e., +6.79%), while a 100% omission to an overestimation of e0 by up to 4.2 years (i.e.,

+9.57%).

Discussion

Genealogies are promising sources for research on historical and kinship demography.

However, these data have not been leveraged to their full potential as we have not fully

understood the biases that affect their representativeness. Here we reported on a series

of experiments on synthetic populations aimed at understanding how three main sources

of bias in ascendant genealogies can affect the accuracy of demographic estimates. Using

the SOCSIM demographic microsimulation program and taking Sweden (1751-2022) as

a case study, we generate fully recorded synthetic populations that allow us to conduct

some experiments on ascendant genealogies. We then adopt the perspective of a group

of hypothetical genealogists, trace their family trees and extract different genealogical

subsets that reproduce the three sources of bias. Hence, based on lineages that survived

to the present, we explore three sources of bias in genealogies: the selection in direct

lineages leading to the exclusion of the childless, the incomplete reconstruction of family

trees involving the inclusion/exclusion of given types of kin, and missing information on

some subpopulations, such as early deceased children and unmarried/childless women,
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who are often underrepresented in genealogies.

Our analysis highlights three key points. On the one hand, besides the exclusion of

extinct lineages in the genealogies of survivors, the extent and completeness of the family

tree, approximated here by the types of direct and collateral kin included, seems to affect

the accuracy of demographic estimates based on ascendant genealogies. Their accuracy

improves as more types of relatives from distant generations are included in the family

tree. On the other hand, such effects do not appear to be linear or unidirectional, as

their magnitude varies over time, particularly between the periods characterized by high

and low fertility and mortality levels. Finally, the omission of subpopulations who are

normally underrepresented in genealogies seems to follow a similar pattern of variation,

although it is more pronounced for children. Such trends may suggest the existence of

a potential relationship between changes in the size and effect of the selected biases in

genealogies over time and changes in the quantum and timing of fertility and mortality

resulting from the demographic transition process. However, such an observation de-

mands further investigation.

According to previous research, genealogical data are biased toward higher fertility

and lower mortality. We found lower mortality in the bias-infused genealogies, leading

to an overestimation of life expectancy at birth, especially in experiments 1 and 3, which

included only direct ancestors (c.a. +42.2% until the mid-20th century) or omitted sub-

populations. However, we did not find the expected higher fertility in any of the three

experiments. The estimates derived from our genealogical subsets are generally lower

than those derived from the whole simulation, especially in Experiment 1 which consid-

ers only direct ancestors and thus likely underestimates the number of births a woman

might have given (c.a. −39% during the first 150 years, i.e., before the onset of the fertil-

ity decline). After including all selected collateral kin in Experiment 2 (i.e., the siblings

of direct ancestors), the gap narrows considerably, especially for periods of high fertility

(c.a. −0.11% during the first century). This also true for life expectancy at birth, which
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is overestimated by only +1.5% over the whole period in Experiment 2. Both changes

in the estimates suggest that the expansion of the kinship network in the family tree is

essential for the accuracy of demographic estimates based on genealogies.

The results presented here have limitations that we would like to acknowledge. First,

our analysis is based on synthetic populations, which are not the same as real populations

and therefore cannot reproduce the whole complexity of their dynamics and structures.

For instance, we do not consider familial transmission of fertility and mortality behavior,

as the input data are only disaggregated by sex and age.1 Thus, beyond the individ-

ual stochasticity resulting from the microsimulation, there is no predefined clustering of

families with better or worse demographic conditions. Second, in our research design,

genealogists are randomly selected from the individuals aged 18 and older at the end

of the simulation. Therefore, based on our synthetic populations, we can only repro-

duce the selection resulting from the survival of some lineages to the time of genealogical

reconstruction, but not that resulting from other factors such as better demographic or

socioeconomic conditions. Third, our experiments are based on an ideal scenario of build-

ing extensive and fully recorded family trees, where genealogists can track demographic

information for all ancestors and collateral kin 8 generations backwards without any re-

strictions. However, it may be more difficult for actual genealogists to obtain complete

and reliable information for distant generations, as data for the earliest periods are more

likely to be imprecise, incomplete, unavailable, or more available for larger or wealthier

families in the past. Therefore, apart from testing the omission of early deceased children

and childless women (Experiment 3), we do not assess the bias resulting from imprecise

or incomplete data in genealogies, which may also limit the scope of our results. Fourth,

the definition and implementation of an ascendant genealogy in this research may also

affect the results, as demographic information may be incomplete due to our choice of

kin types, especially for the most recent periods for which descendants, such as children,

1In the current version of rsocsim, a heterogeneous fertility option can be enabled to allow for its
heritability through the maternal line. However, the default option leads to a significant underestimation
of fertility, especially for the periods when it was at high levels, which would require significant calibration
of the input rates.
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nieces, nephews or grandchildren, could provide some information. We also exclude af-

final and in-law relatives so as to limit the genealogical reconstruction to consanguinity.

Finally, real-world genealogies may be affected by one or more sources of bias simulta-

neously, and such a potential combination of biases may also vary over time and across

generations. However, we consider it is important to analyze the sources of bias one at

a time, before adding the complexity of variations in bias over time and across generations.

Our study of fully-recorded synthetic genealogies provided important insights for re-

searchers using genealogical datasets for historical demographic research. We showed

that deriving demographic estimates from direct lineages exclusively produces unrealistic

results. Including collateral kin to these ancestors-only genealogies (especially siblings

of direct ancestors) significantly improved the accuracy of our estimates, particularly for

remote periods. This shows that the completeness of family trees within ascendant ge-

nealogies is crucial. Researchers working with this data should always compare genealogy-

based estimates with those obtained from other traditional sources to get an idea of the

magnitude of the biases in the data and their direction. The underestimation of fertility

may suggest the exclusion of some types of collateral kin in a genealogy, particularly

for high-fertility periods. A significant overestimation of life expectancy at birth in past

centuries is likely to suggest an underestimation of infant and child mortality, though

estimates can become more accurate if they are conditional upon survival to age 5, 10,

etc. Finally, ascendant genealogies can hardly account for contemporary demographic

events. For this reason, researchers should carefully consider the period for which there

is sufficient high-quality data in the genealogies.

For future studies, we identify three main lines of research. First, studies can examine

the extent to which changes in the size and effect of the sources of bias are related to

changes in fertility and mortality levels resulting from the process of the demographic

transition. This could include comparisons with countries experiencing different patterns.

Second, studies can replicate our analysis focusing on other demographic measures, such
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as parity distributions by cohort and survival thresholds at ages other than 0. Third,

studies can evaluate the size and effect of the sources of bias by considering a cohort

perspective.
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Tables

Table 1 Experiments to assess the effect of three sources of bias in ascendant genealogies:
genealogical subsets and kin types included in the family tree

Experiment 1 2 3
Source of bias Selection in

direct lineages
Incomplete
reconstruction of
family trees

Missing infor-
mation on some
subpopulations

Effect on genealogies Exclusion of the
childless

Inclusion or
exclusion of
collateral kin

Under-
representation of
subpopulations

Population of genealogists 10% sample of individuals aged 18+ alive by 31.12.2022
Genealogical subsets:
Direct ancestors All All All
Collateral kin and nuclear No All All
Omission of children
dead before age 1 or 5

No No 25%, 50%, 75%,
100% removed

Omission of childless women No No 25%, 50%, 75%,
100% removed

Kin types in genealogies
Genealogist (ego) All All All
Parents All All All
Grandparents All All All
Great-grandparents All All All
2x-Great-grandparents All All All
3x-Great-grandparents All All All
4x-Great-grandparents All All All
5x-Great-grandparents All All All
6x-Great-grandparents All All All
Siblings No Gradually/All All
Aunts/uncles No Gradually/All All
First cousins No Gradually/All All
Great-aunts/uncles No Gradually/All All
2x-Great-aunts/uncles No Gradually/All All
3x-Great-aunts/uncles No Gradually/All All
4x-Great-aunts/uncles No Gradually/All All
5x-Great-aunts/uncles No Gradually/All All
6x-Great-aunts/uncles No Gradually/All All
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Figures

Figure 1: Experiment 1: Age-specific and summary demographic measures derived
from genealogical subsets of only direct ancestors (with and without duplicates) versus
the whole SOCSIM simulations. In each panel, the figure represents the means for each
dataset. At young (< 15) and very old (> 95) ages, mortality rates from the experiment
can be 0, which introduces infinite values into the log scale used in the figure, as well as
infinite (x/0) or NaN (0/0). Hence, these values are not shown.
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Figure 2: Experiment 2: Age-specific and summary demographic measures derived from
genealogical subsets of only direct ancestors and together with all selected collateral kin
versus the whole SOCSIM simulations. In each panel, the figure represents the means
for each dataset. At young (< 15) and very old (> 95) ages, mortality rates from the
experiment can be 0, which introduces infinite values into the log scale used in the figure,
as well as infinite (x/0) or NaN (0/0). Hence, these values are not shown.
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Figure 3: Experiment 3A: Age-specific and summary demographic measures derived
from genealogical subsets omitting different proportions of children who died before the
age of 5 versus the whole SOCSIM simulations. In each panel, the figure represents the
means for each dataset. At young (< 10) and very old (> 95) ages, mortality rates from
the experiment can be 0, which introduces infinite values into the log scale used in the
figure, as well as infinite (x/0) or NaN (0/0). Hence, these values are not shown. For the
dataset with 100% omission all mortality rates below age 10 are 0.
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Figure 4: Experiment 3B: Age-specific and summary demographic measures derived
from genealogical subsets omitting different proportions of childless women versus the
whole SOCSIM simulations. In each panel, the figure represents the means for each
dataset. At very old (> 95) ages, mortality rates from the experiment can be 0, which
introduces infinite values into the log scale used in the figure, as well as infinite (x/0) or
NaN (0/0). Hence, these values are not shown.
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Appendix

Figure A1 : Age-specific and summary demographic measures, retrieved from the
Human Fertility Collection (HFC), the Human Fertility Database (HFD), the Human
Mortality Database (HMD), and 10 SOCSIM outputs. The bold lines correspond to
HFC/HFD and HMD estimates and the transparent lines to the 10 SOCSIM simula-
tions. At young and very old ages, mortality rates from the simulations can be 0, which
introduces infinite values into the log scale used in the figure, as well as infinite (x/0) or
NaN (0/0). Hence, these values are not shown.
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Figure A2 : Experiment 1: Age-specific demographic measures derived from genealog-
ical subsets with only direct ancestors (with and without duplicates) versus the whole
SOCSIM simulations in three selected periods. In each panel, the figure represents the
means for each dataset. At young (< 20) and very old (> 95) ages, mortality rates from
the experiment can be 0, which introduces infinite values into the log scale used in the
figure, as well as infinite (x/0) or NaN (0/0). Therefore, these values are not shown.
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Figure A3 : Experiment 2: Age-specific demographic measures derived from genealog-
ical subsets with only direct ancestors and with progressive inclusion of collateral kin
versus the whole SOCSIM simulations. In each panel, the figure represents the means
for each dataset. At young (< 20) and very old (> 95) ages, mortality rates from the
experiment can be 0, which introduces infinite values into the log scale used in the figure,
as well as infinite (x/0) or NaN (0/0). Hence, these values are not shown. For the dataset
with 100% omission of early-deceased children all rates below age 10 are 0.
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Figure A4 : Experiment 2: Summary demographic measures derived from genealogical
subsets with only direct ancestors and with progressive inclusion of collateral kin versus
the whole SOCSIM simulations. In each panel, the figure represents the means for each
dataset.
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Figure A5 : Experiment 3A: Age-specific demographic measures derived from genealog-
ical subsets omitting different proportions of children who died before the age of 5 versus
the whole SOCSIM simulations in three selected periods. In each panel, the figure repre-
sents the means for each dataset. At young (< 10) and very old (> 90) ages, mortality
rates from the experiment can be 0, which introduces infinite values into the log scale
used in the figure, as well as infinite (x/0) or NaN (0/0). Hence, these values are not
shown. For the dataset with 100% omission all mortality rates below age 10 are 0.

36



Figure A6 : Experiment 3B: Age-specific demographic measures derived from genealog-
ical subsets omitting different proportions of childless women versus the whole SOCSIM
simulations in three selected periods. In each panel, the figure represents the means for
each dataset. At very old (> 90) ages, mortality rates from the experiment can be 0,
which introduces infinite values into the log scale used in the figure, as well as infinite
(x/0) or NaN (0/0). Hence, these values are not shown.
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