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Abstract

Multi-state models generalize survival analysis to transitions back-and-forth be-
tween several states. The majority of the literature conceptualizes multi-state models
in continuous time. Discrete-time approaches are rare, despite being well-suited for
many practical applications. In this paper, we collect existing and provide new results
on discrete-time multi-state models. These models have desirable properties and are
easy to apply. Specifically, we set up the model as an absorbing Markov chain, and
we discuss estimation and inference. Given certain assumptions on functional form,
estimation is straightforward, and can use standard methods widely implemented in
statistical software. Moreover, we show that Markov chain multi-state models provide
consistent estimates of several estimands even when the underlying data generating
process is non-Markovian. We conduct simulations which show that small-sample
bias is negligible, and that bias is moderate even when the estimate is not consistent
under a non-Markovian data generating process.

Keywords: Multi-state model; discrete-time multi-state model; Markov chain; Markov
model; interval-censored data; panel data
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1 Introduction
Multi-state models generalize standard survival analysis and competing risk models. They
allow multiple transitions between several states. An illness-death model with recovery is
a simple example with three states: healthy, ill, and dead. Healthy individuals can become
ill; ill individuals can recover; and both healthy and ill individuals might die. Multi-state
models like this have a wide range of applications. For instance, Keiding et al. (2001) study
health outcomes after bone marrow transplantation to treat leukemia. In their model, after
transplantation patients can develop graft versus host disease of different severity, each
captured by a separate state; they can relapse; and they can die. Other medical applications
include different types of cancer (e.g., Le-Rademacher et al., 2018; Uhry et al., 2010; Putter
et al., 2006), heart disease and heart failure (e.g., Ieva et al., 2017; Cannon et al., 2017),
and dementia (e.g. Vermunt et al., 2019; Buter et al., 2008). In economics, multi-state
models have been extensively used to study labor market trajectories (e.g., Harris et al.,
2021; Bijwaard, 2014; Skoog and Ciecka, 2010). Further examples in the social sciences
include patterns of family formation (Bonetti et al., 2013) and migration (Vega and Brazil,
2015; Schmertmann, 1999).

A large part of the literature on multi-state models conceptualizes the data generating
process as time-continuous. That is, time flows continuously, and transitions between
states can happen at any time. Several excellent reviews and textbook treatments of
continuous-time multi-state models are available (e.g., Cook and Lawless, 2018; Putter
et al., 2007; Andersen and Keiding, 2002). Alternatively, multi-state models can be thought
of as evolving in discrete time; i.e., time evolves in discrete steps of fixed length, and the
process jumps between states. The literature on discrete-time multi-state models is much
sparser than the literature on time-continuous models, spread across several disciplines,
and in reviews and textbooks only mentioned in passing, if at all (e.g., Cook and Lawless,
2018; van den Hout, 2017). This gap is surprising, as discrete-time models are useful in
many applications. Measurement often is only available on a discrete time scale (Schmid
and Berger, 2020). For instance, the health status of patients might only be measured
once per week, and panel data which collects repeated measures from respondents at
fixed time-intervals is commonly used in the social sciences. Moreover, discrete-time
approaches build on transition probabilities which are easy to understand, and estimation
is rather straightforward as compared to continuous-time approaches (Tutz and Schmid,
2016).

In this paper, we setup a multi-state model as a discrete-time, homogeneous, and
absorbing Markov chain of first order. Such Markov chains describe the transition process
through one-step transition probabilities. We discuss estimation for such models, closed-
form solutions for some functionals of the process, and inference. We also briefly comment
on the implementation of the approach in statistical software. We provide formal results
on the asymptotic validity of results if the assumptions underlying the Markov chain are
violated, and we conduct simulations to assess finite sample behavior.

A key result of this paper is that neither the Markov assumption nor homogeneity are
necessary for our discrete-time approach produce valid results. The Markov assumption
implies that the process is memoryless: the next state at time t +1 only depends on which
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state is occupied at current time t, and not on earlier states at earlier times. This assumption
is likely violated in many assumptions. However, we show that several statistics can be
consistently estimated with one-step transition probabilities even if the underlying data
generating process is non-Markovian. Moreover, one-step transition probabilities for
non-Markovian processes can be estimated just like in the Markovian case, even though the
derivation/justification is somewhat different. Taken together this means that the Markov
chain approach can be used even when one of it’s key assumptions does not hold, and our
simulations show that finite sample bias is negligible. This does not hold for all statistics
which can be derived from a Markov chain. For instance, the expected (residual) lifetime
in a state can be consistently estimated, while the variance of the (residual) lifetime in a
state cannot. However, in our simulations we show the bias for such statistics is usually
modest, at least if the violation of the Markov assumption is moderate. We provide an
approach to quantify whether this is the case.

2 Model and estimands

2.1 The Markov chain
Let (Zt∈T ) be a time-homogenous, absorbing Markov chain with finite state space Z =
S ×T ∪A . Zt denotes the state occupied by the process at time t. S is a finite set
of transient states, with |S | = S being the number of transient states. A is the set of
absorbing states and |A |= A. The time scale t ∈ T = (0,1,2, . . . ,T ) moves in discrete
time steps. We use a clock-forward approach, and t = 0 refers to the time the process
started (Putter et al., 2007). T is the longest possible duration of the process before
one of the absorbing states in A will be reached, although the absorbing state might be
reached earlier. Deciding on a value for T depends on the specific application, but should
be straightforward for most. For example, in a clinical trial with 5-year follow up, the
maximum time will be 5 years. In a more complete example, t could capture age measured
in years, S could consist of the two states “healthy” and “ill”, and A of the absorbing
state “dead”. Once some maximum age is reached, such as 99 years, individuals die with
probability 1, but they might die earlier. Then the state space consists of the states (healthy,
age 0), (unhealthy, age 0), (healthy, age 1), . . . , (healthy, age 99), (unhealthy, age 99), and
(dead). Thus, in our setup, time is absorbed into the state space and combined with the
transient states. To keep notation simple, we will assume that the process always starts at
time t = 0 and evolves in time steps of one unit.

Pr[Zt+1 = ( j, t +1)|Zt = (i, t)] = p(t)i j is the transition probability that the process is in
state j ∈ S at time t +1 after being in state i ∈ S at time t. These transition probabilities
only depend on the current state at time t and not on the previous history of the process at
times t−1, t−2, and so on; i.e., Pr[Zt+1 = ( j, t+1)|Zt = (i, t)] = Pr[Zt+1 = ( j, t+1)|Zt =
(i, t),Ht−1], where Ht−1 = (Zt−1, . . . ,Z0) captures the history of the process up to and
including t − 1. Thus, the process is memoryless and has the Markov property. The
distribution of states at any time t is denoted as πt = (Pr[Zt = zi,t ]), which is a vector with
S+A entries. π0 is the distribution at the start of the process. In some cases, π0 might be
fixed, particularly when the process always starts in the same state.
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Using this setup, we can collect transition probabilities in a homogeneous transition
matrix which is structured by the time of the process t as (Caswell, 2012)

P =


0 P0 0 . . . 0 R0
0 0 P1 . . . 0 R1
...

...
... . . . ...

...
0 0 0 . . . PT RZ
0 0 0 . . . 0 IA

 , (1)

where the S×S submatrices Pt contain the transition probabilities p(t)i j ; the submatrices Rt
are of dimension S×A and contain the transition probabilities which describe transitions
from the transient to the absorbing states; and IA is an A×A identity matrix, as the
absorbing states are never left. The transition probabilities could also be arranged in
different ways and results do not depend on the specific arrangement used here, but it
makes notation easier (Caswell, 2012).

2.2 State expectancies and other estimands
Given the definitions of the process studied here, standard methods for homogeneous,
absorbing Markov chains can be used to calculate statistics which describe the process,
such as the expected time spent in a state or the lifetime risk of ever entering a state (e.g.
Kemeny and Snell, 1971; Iosifescu, 1980). These methods use the transition matrix P as
defined in equation (1).

The expected time spent in any transient state s ∈ S ×T can be calculated using the
fundamental matrix N (Kemeny and Snell, 1971). It is given by

N = (IST −U) . (2)

IST is an identity matrix of size ST ×ST and

U =


0 P0 0 . . . 0
0 0 P1 . . . 0
...

...
... . . . ...

0 0 0 . . . PT

 , (3)

i.e., the transition matrix for the transient states. Each row of N corresponds to one specific
state; the entries in each row give the expected time spent in all other states starting from
this specific state. Given the way the model is setup here, each entry n(tu)i j of N equals
E[D j,t |Zu = (i,u)], where (i,u) is the starting state corresponding to a specific row and
D j,t = I[Zt = z j,t ] is an indicator variable which is equal to one if the process is in state
j ∈ Z at time t. The derivation of N is a classic result in Markov chain theory and
essentially based on the repeated application of U; i.e., the repeated application of one-step
transition probabilities based on the Markov assumption (for a derivation see Kemeny and
Snell, 1971).
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Let D j capture the total time spent in state j ∈ S . Its expectation is given by

E
[
D j
]

= ∑
i

Pr[Z0 = (i,0)]
T

∑
t=0

E
(
D j,t |Z0 = zi,0

)
(4)

= ∑
i

Pr[Z0 = (i,0)]

(
T

∑
t=0

n(t)i j

)
−0.5I[i = j]. (5)

The adjustment by half a time unit in case of i= j is based on the assumption that transitions
occur mid-interval; i.e., if the process starts in state i at time t = 0, then the transition to
another state at time t = 1 will on average occur at time t = 0.5, thus only contributing
half a time unit.

Many other quantities can be derived using the fundamental matrix and the transition
matrix. For instance, the lifetime risk of ever reaching a state j ∈ Z starting from state j
is also just given by the entries of N, as n(t0)i j = E[D j,t |Z0 = zi,0] = Pr[Zt = z j,t |Z0 = zi,0].
Another useful quantity is the probability of being absorbed into a specific absorbing state
a ∈ A , which can be calculated as the row sums of (Kemeny and Snell, 1971)

N


R0
R1
...
RZ

 . (6)

More generally, the full distribution of D j for j in S can be calculated from the
transition matrix given that the Markov assumption holds (Dudel, 2021; Sericola, 2000).
This allows to calculate the lifetime risk of reaching j, the variance of D j, and other
characterizations of this distribution.

3 Estimation and inference

3.1 Estimation of transition probabilities
For estimating the transition probabilities the observed transitions are relevant. For instance,
if an individual is observed at times 0,1,2, . . . ,T , then this individual will contribute T −1
transitions: the transition from 0 to 1, the transition from 1 to 2, and so on, until the
transition from T +1 to T . Let xi be a vector of time-constant covariates for individual
i; these could capture, for instance, gender, education, or whether in a clinical trial an
individual belongs to the treatment or the control group. Time-varying covariates xit are
also easily possible, but we will restrict ourselves to the time-constant case for simplicity.

Given this notation, assuming there is no censoring, and making use of the Markov
assumption, the likelihood function is (also see van den Hout, 2017)

L = ∏
i

T−1

∏
t=0

∏
j

∏
k

Pr[Zi,t+1 = (k, t +1)|Zi,t = ( j, t),xi]
I[i, j,k,t], (7)
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where ( j, t) ∈ S × t, (k, t + 1) ∈ S × t + 1∪A , and I[i, j,k, t] is an indicator variable
which equals 1 if individual i transitioned from state j at time t to state k at time t +1. To
account for right censoring, let δit equal 0 if individual i is not observed anymore at time
t. Assuming that censoring is independent of the other transitions and that censoring is
non-informative – i.e., that the censoring process does not depend on similar parameters as
the transition process (Kalbfleisch and Prentice, 2002) – the likelihood is proportional to

L ∝ ∏
i

Ti−1

∏
t=0

∏
j

∏
k

Pr[Zi,t+1 = (k, t +1)|Zi,t = ( j, t),xi]
I[i, j,k,t], (8)

where Ti is the last time unit i is observed. Left censoring can be dealt with in a similar
way.

For parametric estimation, let β jkt be a vector of coefficients which describe the impact
of xi on the transition from state ( j, t) to state (k, t +1). The likelihood is then proportional
to

L ∝ ∏
i

Ti−1

∏
t=0

∏
j

∏
k

Pr[Zi,t+1 = (k, t +1)|Zi,t = ( j, t),xi,β jkt ]
I[i, j,k,t]. (9)

This setup will have many parameters to estimate, potentially resulting in numerical
instabilities and affecting inference (Jóźwiak and Moerbeek, 2012). This is a common
issue in multi-state modeling, and a typical solution is to arrive at a reduced model by
introducing assumptions on the functional form (e.g., Fiocco et al., 2008). Here, we
will include both t and Zt as covariates; i.e., such that the new vector of covariates is
yt = (x,Zt , t). This leaves us with

L ∝ ∏
i

Ti−1

∏
t=0

∏
k

Pr[Zi = k|yi,t ,γk]
I[i, j,k,t], (10)

where γk is the new set of coefficients, including all coefficients for x as well as the
coefficients for t and for Zt . Here, Zi instead of Zi,t+1 is used to indicate that the dependence
on t is now implicit in the vector of covariates. This means that in the reduced model
transitions follow a multinomial distribution conditional on yi,t and the model parameters;
i.e., the reduced model is equivalent to a discrete-time competing risk model.

The reduced model can be estimated by using several approaches for discrete-time
competing risks. Here, we will use multinomial logistic regression, which is straightfor-
ward to implement and extend. If M = S+A is the total number of transient and absorbing
states not accounting for time, then there will be M−1 equations, one for each transient
and absorbing state minus one as the transition probabilities sum to one. Each of these
equations represents the transition probability to one state. The regression equations are
given by

log
[

Pr[Zt+1 = (k, t +1)|yt ]

Pr[Zt+1 = (M, t +1)|yt ]

]
= αk +

M−1

∑
i=1

γ jkI(Zt = zk,t)+ f [t]+x′γx. (11)

On the left hand side of the equation are the log odds of being in state (k, t +1) relative
to state (M, t +1). On the right hand side, αk denotes the intercept; γ jk is the coefficient
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for starting in state ( j, t); f [t] is some function of the time of the process, such as a simple
linear function γtt or a polynomial of t; and γx captures the coefficients for explanatory
variables x. Given parameter estimates, the calculation of transition probabilities from
equation (11) is straightforward.

3.2 Variance estimation using the block bootstrap
Estimating the variance of functionals of a Markov chain is not straightforward. These
functionals are usually non-linear functions of the transition probabilities, making it
difficult to find analytical solutions. The block bootstrap is an alternative approach (e.g.,
Sutradhar and Cook, 2008). It is easily applicable to any functional of the Markov chain,
and it has been shown to perform well (Dudel and Myrskylä, 2020). All data belonging
to the same unit or individual k is treated as one “block” bk. B denotes the total number
of blocks and B = {b1, . . . ,bk, . . . ,bB} is the set of all blocks. For each of R bootstrap
replications, a new sample B∗ is created by sampling B blocks from B with replacement
and the functional of interest is calculated. The variance across bootstrap replications then
is used as an estimate of the sampling variance of the functional.

4 Consistency

4.1 Transition probabilities and the state distributions
In this section, we will show that some functionals of the transition probabilities can be
consistently estimated using the Markov assumption even when the data generating process
(DGP) is non-Markovian, including state expectancies and lifetime risks; e.g., equation (5)
provides a consistent estimate of E(D j). The proofs require consistent estimates of one-
step transition probabilities and of the starting distribution. This is straightforward. When
the DGP is non-Markovian, Pr[Zt+1 = (i, t + 1)|Zt = ( j, t)] ̸= Pr[Zt+1 = (i, t + 1)|Zt =
( j, t),Ht−1]; i.e., Pr[Zt+1 = (i, t +1)|Zt = ( j, t)] does not provide a complete description
of the process. Nevertheless, it can still be estimated using the methods described in
the previous section, as standard consistency arguments do not require that Pr[Zt+1 =
(i, t + 1)|Zt = ( j, t)] is a complete description of the DGP; or put differently, consistent
estimation of conditional probabilities does not require that these conditional probabilities
are in any sense a complete description of the DGP or that the Markov assumption
holds. Moreover, it is still an interesting statistic, as it can be interpreted as the average
over all potential histories, ∑Ht−1 Pr[Zt = ( j, t),Ht−1]Pr[Zt+1 = (i, t+1)|Zt = ( j, t),Ht−1]
(Putter and Spitoni, 2018). Consistent estimation of the starting distribution, π0, is also
straightforward.

Based on consistent estimates of one-step transition probabilities and the starting
distribution, πt can be estimated consistently when the DGP is non-Markovian. For
instance, entry j of π1 equals

Pr[Z1 = ( j,1)] = ∑
i

Pr[Z0 = (i,0)]p(0)i j ; (12)
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i.e., it is a linear combination of the starting distribution and one-step transition probabilities
and thus consistent by Slutsky’s theorem if its components are consistently estimated. This
argument can be applied repeatedly to show that the distribution of states at any time t,

Pr[Zt+1 = ( j, t +1)] = ∑
i

Pr[Zt = (i, t)]p(t)i j , (13)

can be consistently estimated. Thus, for the calculation of the cross-sectional state distribu-
tion only the current state is required and the history is irrelevant.

4.2 State expectancies
Given consistent estimates of πt , consistency of E(D j) followsstraightforward. E[D j] =

∑t E[D j,t ] as the expectation is additive. Assuming that individuals spend one full time
unit in state j if they occupy it at time t, E[D j,t ] = Pr[Zt = ( j, t)], which can be taken from
πt . Thus, E[D j] = ∑t Pr[Zt = ( j, t)], which is equivalent to equation (4):

E
[
D j
]

= ∑
t

Pr[Zt = ( j, t)] (14)

= ∑
t

∑
i

Pr[Zt−1 = (i, t −1)]p(t−1)
i j (15)

= ∑
i

Pr[Z0 = (i,0)]
T

∑
t=0

Pr[Zt = ( j, t)|Z0 = (i,0)] (16)

The step from (15) to (16) follows from recursively replacing Pr[Zt−1 = (i, t −1)] with its
definition from equation (13) and then rearranging terms. The correction by 0.5 time units
given in equation (5) is missing but can easily be added.

4.3 Lifetime risk
Another quantity which can in principle be estimated consistently even if the DGP is
non-Markovian is the probability of ever reaching a specific state s ∈ S . To achieve this,
s is turned into an absorbing state and moved from S to A , as was already suggested
by Brookmeyer and Abdalla (2018). Then the probability of being absorbed into state
s and not other states a ∈ A equals the probability of ever reaching s; e.g., the lifetime
risk of ever getting disabled. This exploits that while transition probabilities do not have
a memory, they are conditional on not having reached an absorbing state before; i.e.
Pr[Zt+1 = ( j, t +1)|Zt = (i, t),s ̸∈ Ht−1] = Pr[Zt+1 = ( j, t +1)|Zt = (i, t)].

Formally, the probability of being absorbed in state s can be written as

Pr[s ̸∈ HT ] = 1−Pr[s ∈ HT ] (17)

= 1−∑
i

T

∑
t=0

∑
k∈S ,k ̸=s

p(t)ks Pr[Zt = (k, t)|Z0 = (i,0)]Pr[Z0 = (i,0)]. (18)

This is equivalent to equation (6). Consistency follows the same argument as for state
expectancies: the calculation does not require the Markov assumption, and its a linear
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combination of quantities which can be consistently estimated irrespective of whether the
DGP is Markovian or not.

While estimation of the lifetime risk is feasible in this way, it increases the demands
regarding the data, as s will in reality not be absorbing. That is, an individual might have
been in state s in the past, but this might not be recorded in the data. This could lead to
biased transition probabilities, where the bias will depend on the extent to which past visits
to state s are missed in the data.

4.4 Other functionals and higher moments
Consistent estimation of higher moments of D j, and of its complete distribution in general,
is not possible if the DGP is non-Markovian. For instance, the variance of D j requires
knowledge of E[D j,tDk,u] = Pr[Zt = ( j, t),Zk = (k,u)] which only can be calculated from
memoryless transition probabilities if the Markov assumption holds. In this case detailed
knowledge of trajectories of the process is required.

However, the amount of bias when estimating higher moments of D j using the Markov
assumption when the true data generating process is non-Markovian depends on the extent
the true process has memory. For instance, the variance of D j can be written as

Var[D j] =
T

∑
t=0

Var[D j,t ]+ ∑
0≤t<k≤T

Cov[D j,t ,D j,k] (19)

=
T

∑
t=0

Var[D j,t ]+
T

∑
t=0

Cov[D j,t ,D j,t+1]+ ∑
0≤t≤T,k>t+1

Cov[D j,t ,D j,k]. (20)

The first and the second sum only require knowledge of p(t)i j , while the third sum requires
transition probabilities with more memory if the process is non-Markovian. Bias will
be proportional to this third sum. If the third sum is small relative to the first and the
second sum, then in practice estimates of the variance of D j using the Markov assumption
might provide good approximations. A similar reasoning applies to other moments of the
distribution of D j, and more generally to functionals of transition probabilities: the process
might not be memoryless, but it might not have a long-term memory either.

4.5 Testing the Markov assumption
In practical applications, departures from the Markov assumption will not always be clear
cut, and might be gradual. For instance, the Markov assumption could strictly speaking be
violated, but conditioning transition probabilities on states visited at time t −1, t −2, etc.
might not change them much as compared to one step transition probabilities. This might
be particularly true when additionally conditioning on a set of covariates x. Moreover,
the Markov assumption could hold for some types of transitions, but not for others. If
transitions of the latter type occur with a relatively low probability, our approach also could
provide good approximations.
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Here, we propose a test of the Markov assumption which is straightforward to imple-
ment and easy to interpret. It is defined as follows:

∆(L) =
1

NObs
∑

i

1
2
|Pr[Zt+1 = (i, t +1)|x]−Pr[Zt+1 = (i, t +1)|x,Zt ,Zt−1, . . . ,Zt−L]| , (21)

where NObs is the number of observed transitions in the data. For each observed transition
in the data, predicted transition probabilities without any lagged state are calculated, and
then compared to transition probabilities up to lag t −L. Technically, this is equivalent to
an average of the dissimilarity index (Kuha and Firth, 2011). ∆(L) assesses how much
individual-level predictions of the state at time t +1 change when additional lags of the
occupied state are introduced. It always lies between 0 and 1. It equals 1 when all
predictions change completely, and it equals 0 if nothing changes. ∆(0) just conditions on
the current state Zt with no lag. We define ∆(−1) = 0 as a second reference point when
neither the current state nor lags are included. Comparing ∆(L) with ∆(0) and ∆(−1) then
shows how much prediction can be improved over only using covariates and only using
covariates and the Markov assumption. Inference can use the block bootstrap.

5 Simulations

5.1 Setup
Using simulations we assess the finite sample bias of three Markov chain estimands: state
expectancies, lifetime risks, and the variance of the distribution of the time spent in a state.
The simulations are set up such that the Markov assumption is violated to varying degrees,
ranging from mild violations to processes which strongly depend on the past. In addition,
we vary several other parameters, such as the number of states, sample size, duration of
the process, and the amount of censoring.

To simulate DGPs which violate the Markov assumption we exploit that in the discrete-
time setting, we can introduce duration-dependence of transition probabilities by extending
the state space. That is, if m captures the time spent in state i, then the state space is
extended to include (i, t,m) instead of just (i, t). This way, it is theoretically possible to
include the complete history in the state space (i, t,Ht−1), and to capture any discrete-time
process with a Markovian model. Practically, however, this will not be possible. For our
simulations, estimation will only include (i, t) and not (i, t,m); that is, any state (i, t,m)
will be represented by (i, t), irrespective of the value of m. While the true underlying DGP
is Markovian, the resulting Markov chain with lumped states is not (Kemeny and Snell,
1971).

For a first set of simulations, the three models in Figure 1 were used to simulate DGPs,
for a maximum of up to 10 time steps. Model 1 has two transient states, A and B, and is not
duration dependent. In contrast, for Models 2 and 3 the state space is extended to capture
duration dependency, and the first time unit in states A and B comes along with different
transition probabilities than later time units. In all models the transition probabilities do not
depend on t. The transition probabilities were chosen such that Model 2 strongly violates

10



A B

X

(a) Model 1

A (1)

A (2+)

B (1)

B (2+)

X

(b) Model 2 and 3

Figure 1: Model structure for the simulations.

the Markov assumption. Model 3 is between Model 1 and Model 2. For all three models,
the true values of the estimands of interest can be calculated analytically.

In the simulations, for all three models only a basic multistate model with two transient
states is estimated. Based on the estimated transition probabilities, all estimands are
calculated using the Markov assumption. These point estimates can be compared to the
true values for the underlying process. We conduct our simulations with sample sizes of
100, 250, and 500 individuals. For each sample size, we run 1,000 replications and report
the mean relative bias calculated over all 1,000 replications as well as the average value of
∆(1).

5.2 Results
Results are shown in Table 1 and expressed as mean relative bias (MRB), E(Si −T )/T ,
where Si is the result of replication i of the simulation for a certain statistic and T is the
true value. As can be seen, the MRB for E(A) and E(B) is always negligible, irrespective
of the data generating process (DGP) and sample size. Bias for Var(A) and Var(B) can be
rather substantial if the DGP is non-Markovian. R(A) and R(B) are interesting in that bias
is very small at worst; however, the highest values of MRB are not observed for model 2
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Table 1: Mean relative bias (MRB) of the state expectancy in states A and B, E(A) and
E(B); the variance of the time spend in A and B, Var(A) and Var(B); the lifetime risk
of ever reaching state A and B, R(A) and R(B); and average of ∆(1) for the different
simulation setups.

Model Sample size E(A) E(B) Var(A) Var(B) R(A) R(B) E(∆(1))

Model 1 100 0.002 -0.002 -0.005 -0.005 0.000 0.000 0.020
250 0.004 0.004 -0.001 -0.001 -0.001 0.000 0.013
500 0.006 -0.006 0.015 0.015 0.000 0.000 0.009

Model 2 100 -0.001 0.001 7.492 7.492 0.001 0.001 0.369
250 -0.002 0.002 7.946 7.946 0.001 0.001 0.369
500 0.001 -0.001 7.757 7.757 0.001 0.001 0.368

Model 3 100 -0.006 0.006 0.534 0.534 -0.022 -0.021 0.246
250 -0.003 0.003 0.540 0.540 -0.020 -0.021 0.249
500 0.006 -0.006 0.551 0.551 -0.019 -0.022 0.249

but for model 3. This might seem surprising, as model 3 has lower values for ∆(1) than
model 2. However, model 2 is set up in such a way that both states A and B are essentially
always reached, leaving little variation, if any.

6 Outlook
Overall, our theoretical findings as well as the results of our simulations show that discrete-
time multistate models work extremely well, even if the Markov assumption is violated.
Further simulations will emulate more realistic settings and will, for instance, also take
into account that transition probabilities might change over time as well as censoring.
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