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Longitudinal biomarker data and cross-sectional outcomes are routinely
collected in modern epidemiology studies, often with the goal of informing
tailored early intervention decisions. For example, hormones such as estra-
diol (E2) and follicle-stimulating hormone (FSH) may predict changes in
womens’ health during the midlife. Most existing methods focus on con-
structing predictors from mean marker trajectories. However, subject-level
biomarker variability may also provide critical information about disease
risks and health outcomes. Current literature does not provide statistical mod-
els to investigate such relationships with valid uncertainty quantification. In
this paper, we develop a fully Bayesian joint model that estimates subject-
level means, variances, and co-variances of multiple longitudinal biomark-
ers and uses these as predictors to evaluate their respective associations with
a cross-sectional health outcome. Simulations demonstrate excellent recov-
ery of true model parameters. The proposed method provides less biased
and more efficient estimates, relative to alternative approaches that either ig-
nore subject-level differences in variances or perform two-stage estimation
where estimated marker variances are treated as observed. Empowered by the
model, analyses of women’s health data reveal, for the first time, that larger
variability of E2 was associated with slower increases in waist circumference
across the menopausal transition.

1. Introduction.

1.1. Scientific background and motivation. The menopausal transition is a critical
lifestage that can shape women’s midlife and long-term health. The US census bureau es-
timates that by 2050, approximately 47 million women in the U.S. will be aged 45 to 64
years (U.S. Census Bureau). Worldwide, there were 657 million women aged 45–59 in 2021
(Rees et al., 2021), and women are projected to spend more than one-third of their life post-
menopause (Mohammadalizadeh Charandabi et al., 2015). Therefore, understanding how the
midlife can affect health outcomes is vital for supporting a healthy aging population.

Reproductive aging and the menopausal transition are characterized by well-established
patterns of falling levels of estradiol (E2) and rising levels of follicle-stimulation hormone
(FSH) (Randolph et al., 2004). In addition to regulating reproductive functionality, E2 and
FSH have also been found to be highly associated with risk of adverse health outcomes
(Karvonen-Gutierrez and Harlow, 2017; Zaidi et al., 2018). Since E2 regulates adipose tissue,
women tend to gain fat mass post-menopause (Colleluori et al., 2018). Fat mass distribution
also changes, with body fat shifting to the intraabdominal region during the menopausal
transition (Carr, 2003). Excess abdominal fat is one of the symptoms of metabolic syndrome,
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which can place individuals at higher risk of health conditions such as heart disease, diabetes,
and stroke. Waist circumference is a commonly used measure of abdominal fat and previous
research suggests that waist circumference may be an important indicator of health risks
(Ross et al., 2020; Darsini et al., 2020).

Higher increases in FSH levels are also associated with higher fat mass increases in women
undergoing menopause (Sowers et al., 2007). Additionally, FSH appears to be an important
predictor of increased adiposity, reduced energy expenditure (Sponton and Kajimura, 2017;
Kohrt and Wierman, 2017) and lower lean mass during the postmenopause (Gourlay et al.,
2012). This motivates further investigation into how E2 and FSH can jointly predict body
mass composition in women. Identifying these associations is important since excess body
weight can increase the risk of adverse health outcomes and mortality in midlife women
(Stevens et al., 2002)

Growing evidence also suggests that the variability of these hormones may be critical
for predicting adverse health outcomes. Gordon et al. (2016) found that higher E2 variabil-
ity in women over a period of 14 months was predictive of greater depressive symptoms at
month 14. Lower levels of FSH variability in perimenopausal and postmenopausal women
was strongly associated with reduced risk of hot flash, while changes in individual mean
FSH trajectories were not similarly predictive of hot flash risk (Jiang et al., 2015). By un-
derstanding how the variability of these biomarkers relate to changes in body mass, we can
improve health diagnostics for women and support individualized treatment plans. Despite
this emerging work, the majority of current research has still focused on using mean hormone
measurements or group based trajectories to predict health outcomes. The existing literature
does not account for how individual variabilities or co-variability of E2 and FSH may be
related to changes in body mass and waist circumference across the menopausal transition.
Thus, there is a dearth of statistical models that properly extract and use these individual
hormone trends and variabilities when predicting an outcome.

1.2. SWAN Dataset. Our motivating dataset comes from the Study of Women’s Health
Across the Nation (SWAN), a multi-site US-based longitudinal cohort study that followed
women over the menopausal transition (Sowers et al., 2000). The SWAN dataset has made it
possible to establish longitudinal associations between hormone trajectories and health out-
comes (Park et al., 2017; Sowers et al., 2007), rather than relying on baseline hormone mea-
surements to predict health risks. The comprehensive and longitudinal aspect of this dataset
makes it ideal for understanding how individual hormone trends can predict changes in body
mass composition.

To be eligible for the SWAN cohort, women had to be between 42-52 years old, had to
have had at least one menstrual period and not used reproductive hormones (e.g. hormonal
contraceptives or other exogenous hormones) in the past three months prior to enrollment in
the study, had to reside in the geographic area of the clinical site, and had to self-identify as
White, Black, Chinese, Japanese or Hispanic. Serum E2 and FSH biomarker measurements
were collected at baseline and during 13 of the 15 approximately annual follow-up visits,
along with other health measurements. Figure 1 shows E2 and FSH measurements collected
from SWAN participants, along with a loess curve to estimate the overall population trend.
Body composition was measured via dual-energy X-ray absorptiometry (DXA) at five of
the seven clinical site visits. Women also completed questionnaires regarding lifestyle and
socio-demographic characteristics.

For the fat mass dataset, we initially started with women who were enrolled at one of the
five sites with body composition measures. If a woman was on hormone replacement ther-
apy during a clinical visit, we removed that observation from the dataset. Additionally, we
removed women who did not have an observed FMP. Although the SWAN study enrolled
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FIG 1. Plots of the observed E2 and FSH measurements. In our analysis, we log-transformed these measurements
and then detrended them by subtracting the individual observations from a population loess fit. See S7 of the
Supplementary Materials for additional commentary regarding the loess fit for the FSH measurements.

five racial/ethnic groups, the site with Hispanic women did not have body composition data;
hence, Hispanic women are not included in the fat mass analysis. After computing the fat
mass composition window (see below), an additional 47 women were excluded from the
analysis, due to either not having both pre and post FMP observations or not having observa-
tions that fell within the desired time range before and after FMP (i.e. observations outside of
the 3-7 year range before and after FMP). The 3-7 year range was chosen in order to ensure
that the changes in fat mass distribution was captured sufficiently before the start (and end)
of the menopausal transition, and the number of women who had measurements beyond the
7 year cutpoint before and after FMP was scarce. The final analytical fat mass dataset was
completed on 841 individuals, with a total number of 9,902 hormone measurements.

For the individual trajectory model, we use the log values of FSH (mIU/mL) and E2
(pg/mL) measured at each visit, as shown in Figure 1. We removed the E2 and FSH pop-
ulation trends by fitting a lowess curve to each (log) hormone. The lowess curve was fit by
using time to FMP at each visit as the numeric predictor for the corresponding hormone
measurement and using weighted least squares to obtain the predicted fit at each timepoint.
We then subtracted the individual measurements from the lowess estimates. By removing
the common population trends in the data, our model can better approximate the individual
trajectories and individual level variances using a simpler (lower dimensional) subject-level
trajectory model. Figure 3 summarizes the subject-level longitudinal data model fit results
for two randomly-selected women.

For waist circumference analysis, since all seven sites collected waist circumference mea-
surements, we were able to have a larger sample size for this analysis. As in the fat mass
analysis, we removed women who did not have an observed FMP and we also removed
observations where the woman was on hormone replacement therapy. Our final analytical
dataset for waist circumference was completed on 1,029 individuals and 12,059 hormone
measurements.

For the outcomes of interest, we selected fat mass rate of change and waist circumference
rate of change over a selected time window. We define this window to be from the visit closest
to 5 years before the FMP to the visit closest to 5 years after the FMP, with the requirement
that the closest visit be at least 3 or more years before/after the FMP. By doing this, we aimed
to capture the most accurate trend in body composition change that was not fully dependent
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Variable Statistic Value n
Longitudinal Predictors Mean/SD
E2 Residuals -0.04 (0.81) 9,902
FSH Residuals 0.02 (0.61) 9,902
Health Outcome Mean/SD
Fat Mass Rate of Change 0.001 (0.004) 841
Baseline Body Mass Mean/SD
Fat Mass Prop. at Visit 1 0.36 (0.07) 841
Race/Ethnicity Percent
White (Reference) 47.2% 397
Black 24.9% 209
Japanese 15.3% 129
Chinese 12.6% 106
Physical Activity Percent
Lowest Activity (Reference) 23.6% 199
Increasing Activity 12.7% 107
Decreasing Activity 22.7% 191
Middle Activity 25.6% 215
Highest Activity 15.3% 129

TABLE 1
Descriptive statistics of the fat mass dataset based on 841 individuals.

Variable Statistic Value n
Longitudinal Predictors Mean/SD
E2 Residuals -0.003 (0.80) 12,059
FSH Residuals -0.008 (0.62) 12,059
Health Outcome Mean/SD
Waist Circumference Rate of Change 0.41 (0.82) 1,029
Baseline Waist Circumference Mean/SD
Waist Circumference at Visit 1 86.03 (15.90) 1,029
Race/Ethnicity Percent
White (Reference) 47.0% 484
Black 26.2 % 270
Japanese 15.3% 128
Chinese 11.5% 119
Hispanic 2.7% 28
Physical Activity Percent
Lowest Activity (Reference) 23.6% 267
Increasing Activity 12.7% 131
Decreasing Activity 22.6% 233
Middle Activity 24.0% 247
Highest Activity 14.6% 151

TABLE 2
Descriptive statistics of waist circumference dataset based on 1,029 individuals.

on a measurement right before menopause. The fat mass (waist circumference) rate of change
is the difference between the ‘last visit’ (post FMP) and the ‘first visit’ (pre FMP) divided by
the amount of time (in years) within each individual window. Figure 2 shows the individual
observations of these rates. We normalized the fat mass measurements by using the propor-
tion (i.e. ratio) of fat mass to body weight (grams) rather than using the unadjusted fat mass
measurements (also in grams), thus creating a measure of percent fat mass for each woman.
Raw fat mass values are highly correlated with body weight, and previous work has demon-
strated that there is no menopausal effect of body weight change beyond normal aging. The
proportion of fat mass, however, has a strong curvilinear relationship across the menopausal
transition. For this reason, we have used fat mass proportion in our analyses to reflect the
impact of the MT on this measure. (Greendale et al., 2019). Figure 2 displays the histograms
of these outcomes, after performing the normalization (for fat mass) and rate adjustments (for
both models).
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FIG 2. Histograms of the observed rate of change in fat mass composition (left) and the observed rate of change
in waist circumference (right). The observed values for the fat mass outcome are in fat mass proportional to body
weight (both in grams) per year and waist circumference (cm) per year.

1.3. Methods for longitudinal markers and health outcomes. A large and well-developed
body of literature over the past two decades uses longitudinal biomarker or questionnaire
data to predict health outcomes: an early example is given by Henderson, Diggle and Dobson
(2000), who tied psychiatric disorder measures over time to predict dropout in schizophrenia
trials; they used a subject-level random effect in the disorder trajectory that is also present as
a frailty in the time-to-event model. Proust-Lima et al. (2014) link latent classes of prostate
specific antigen to survival models. More recent work by Wang, Luo and Li (2017) considers
multiple longitudinal predictors - in their case, measures of daily functioning - to predict
onset of Parkinson’s disorder.

However, methods that assess the utility of residual variability in predicting health out-
comes are largely lacking in the literature, despite calls for increased focus on developing
methods for variance structures. Such methods may elucidate whether variability as predic-
tors could yield both better prediction and improved inference (Carroll, 2003). This oversight
appears to be a substantial gap in the statistical methods literature given that increased vari-
ance can be an early predictor of instability in biological systems; for example, heart rate
variability may be a marker of autonomic dysregulation given its predictive nature with poor
health outcomes (Young and Benton, 2018). Our proposed method addresses this gap by ex-
plicitly parameterizing individual variances (and co-variances) and uses these estimates as
predictors in the outcome model.

Early literature used simple two-stage approaches with a squared-error estimate of vari-
ance obtained from the observed data to predict a single outcome (Sammel et al., 2001),
ignoring the inherent uncertainty in the constructed variance estimates. More recent methods
have focused on a joint model for the predictors and outcomes (Elliott, Sammel and Faul,
2012; Jiang et al., 2015, e.g.,). The joint modeling approach is critical given that statisti-
cal uncertainty of the constructed predictors, e.g., mean and residual variance estimates, if
unaccounted for, can lead to extremely biased estimates of the effects of these individual-
level mean trajectories and the residual variances on the outcomes (e.g., Ogburn et al., 2021;
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Wang, McCormick and Leek, 2020). Finally, prediction approaches based on multiple trajec-
tories - which allow for consideration of residual covariances as well as residual variances
as predictors – appears to be completely absent from the biostatistics toolkit. In a Bayesian
framework, our joint model properly accounts for the uncertainty in estimating the residual
variances and covariances of multiple biomarkers, thereby propagating the uncertainty into
outcome prediction.

This paper is organized as follows. Section 3 describes our joint model framework linking
the mean trajectory and residual variance model for the longitudinal predictors with the model
for the outcome. Section 5 conducts extensive simulation studies to show that our proposed
approach produces less biased estimates of the outcome regression coefficients with valid
statistical uncertainty assumptions relative to a variety of increasingly complex two-stage
competitors that fail to account for the statistical uncertainty in the subject-level means and
in the variances. Section 6 applies our method to assess the associations between the mean
trajectories, variance, and covariance of E2 and FSH and the changes in fat body mass and
fat distribution during the menopausal transition using women’s health data from the SWAN
study. Section 7 discusses the implications of our work along with limitations and directions
for future research.

2. Previous Work on Variances as a Predictor of Outcomes. Joint modeling of longi-
tudinal trajectories and cross-sectional outcomes is a rich area of statistical research (Chi and
Ibrahim, 2006; Ibrahim, Chu and Chen, 2010; Lawrence Gould et al., 2015). For example,
including longitudinal measurements in joint longitudinal - survival models can provide bet-
ter estimates of the survival outcome by accounting for the individual trajectories over time,
as shown by Long and Mills (2018), who used a joint model to predict motor diagnosis using
longitudinal characterizations of Huntington’s disease progression taken at annual visits; also
see Papageorgiou et al. (2019) for a comprehensive review. Until recently, most of the focus
in the area of modeling individual trajectories has been on modeling the mean trends. The
variability associated with individual biomarkers has traditionally been treated as a nuisance
parameter. In mathematical notation, these joint models typically take the form:

Xij |Bi,Ψ∼N (µ(Bi, tij),Ψ),

Yi |Bi, β, σ
2 ∼N (η(β,Bi), σ

2),

where X are the observed markers/predictors, Y is the observed outcome of interest, the main
predictors of interest are the mean parameters Bi and the variance-covariance matrix Ψ is
assumed to be a population level parameter, rather than allowing each individual to have their
own variance-covariance matrix (e.g. Si).

However, interest in both modeling the residual variability of individual trajectories and
using these estimates as predictive variables has been growing. Elliott, Sammel and Faul
(2012) studied the relationship between individual variability in short-term memory tests
and long term onset of senility. They found that increased variability in the memory tests
were associated with increased risk of senility. Furthermore, this variability was a stronger
predictor of senility than the mean trajectories. With regards to women’s health, some pre-
vious research has considered variance as a predictor of health outcomes. Harlow, Lin and
Ho (2000) found that women who had increased menstrual cycle variability at a younger age
were more likely to experience abnormal uterine bleeding. The variability of menstrual cy-
cle length was also found to be an important predictor of menopausal onset (Huang, Elliott
and Harlow, 2014). Sammel et al. (2001) used a two-stage model to that linked individual
means and variances of longitudinal profiles to a corresponding health outcome. They found
that E2 variability during the menopausal transition was highly predictive of experiencing
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hot flashes. Jiang et al. (2015) proposed a joint model of individual means and variances of
FSH hormone trajectories and risk of hot flash as the health outcome. Low FSH variability
was predictive of substantial reduction in risk of hot flash. We note that a common feature of
these models is the lack of multiple predictors in the longitudinal sub-model.

Our work’s most important contribution over the previous work is to consider the
individual-level means and variances of multiple predictor trajectories, rather than a sin-
gle biomarker trajectory, in a joint modeling framework. This allows for investigation into
how these trajectories may both independently and interactively associate with outcomes,
and in turn requires substantial methodological development, particularly to decompose an
individual-level variance-covariance matrix for use in a joint modeling setting. This work
also adds to the still small set of literature showing the use of variability as a predictor of
health outcomes, and more generally emphasizes the need for a joint modeling framework
over the less efficient two-stage approach, as we show in Section 5. Also, to the best of our
knowledge this is the first rigorous assessment of the role of individual trends and variability
of E2 and FSH hormones in jointly predicting body mass changes.

2.1. Measurement Error in Multivariate Linear Models. An advantage of joint models
relative to two-stage models is that the uncertainty associated with the parameters estimated
in the first stage is carried over to the second stage. Consider a simple linear relationship of
the form:

(1) Y =Xβ + ϵ,

where X is a n×K matrix of K predictors and ϵ is an n× 1 vector of independent normal
error terms with mean 0 and variance σ2. Suppose that the true relationship between Y andX
is described by (1), but instead, we observe X̃ , where X̃ =X +U , where U is the matrix of
normally-distributed independent measurement errors with mean 0 and variance-covariance
ΣU . If U ⊥⊥X , then in the K = 1 scenario, we know that the estimate of β will be attenuated
towards the null (Carroll et al., 2006, p.42-43).

In the Bayesian setting, given X̃ =X + U where X̃ is the observed predictor, X is the
(unknown) predictor, and U is the measurement error, the bias is now also dependent on
the choice of prior for X̃ . With a sufficiently weak prior choice (a weak Gaussian prior is
suggested in Stan Development Team (2023) and enough data, the bias from a two-stage
Bayesian model should be similar to the bias from a frequentist two-stage (Richardson and
Gilks; Bartlett and Keogh). In the limit as n grows large, we expect the biases of the frequen-
tist and Bayesian approaches to converge.

For K > 1, with multiple predictors measured with error, the estimates of the β are still
biased, but the direction of the bias now depends on the correlation between the measurement
errors (Carroll et al., 2006, p.53-55). Consider the following equation for K = 2 predictors:

(2) Y = α+ β1X1 + β2X2 + ϵ,

and suppose we measure X1,X2 with some error:

(3) X̃1 =X1 +U1, X̃1 =X2 +U2.

Griliches and Intriligator (1987, p.1477–1479) derive the bias of estimating β1 as:

(4) plim(̂b1 − β1) =− β1λ1
(1− ρ2)

+
β2λ2ρ

(1− ρ2)
,

where b̂1 is the coefficient obtained from regressing Y on X̃1 in the multiple regression
model, λ1 =Var(U1)/σ

2
1 is the relative amount of measurement error in X1 where σ21 refers
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to the variance of X1, and ρ is the (true) correlation between X1,X2; plim refers to con-
vergence in probability. A similar equation can be derived for the bias of estimating β2 in
the presence of such measurement errors. We can see, then, that the bias is increased by a

factor of
1

(1− ρ2)
. The overall effect of the additional variable X̃2 is a bias towards the null

(Griliches and Intriligator, 1987, p.1479).
For K > 2 variables, the expressions for the bias of each predictor become more compli-

cated to derive. We show via simulations in Section 4 that the bias in the mean parameters
is clear in the two-stage model linear regression alternatives to the joint model. Furthermore,
we see that that bias in the estimates of the variance-covariance parameters persists in the
two-stage model alternatives. This would be an issue if individual variability (covariability)
is predictive of an outcome of interest.

3. Proposed Model.

3.1. Notation. Let D = (Yi,Xij , tij ,Wi) be the observed data for subject i= 1, . . . ,N ,
where Yi ∈ R1 is a continuous outcome, Xij = (Xij1, . . . ,XijQ)

T is a vector of Q time-
varying marker values at observation time points tij , j = 1, . . . , ni, that may differ by sub-
jects, and Wi = (Wi1, . . . ,Wid)

T is a vector of d time-invariant covariates, e.g., race/ethnic-
ity, activity class.

The proposed model has two connected components. We first specify the regression model
for irregularly and longitudinally observed multiple markers (tij ,Xij), j = 1, . . . , nij ; the
second component links the outcome Yi to time invariant covariates Wi and unobserved
individual-specific vectors of regression coefficients and residual variance-covariance matri-
ces in the model for longitudinal markers, enabling inference about how the mean trajectories
and residual variations are associated with the outcome Yi.

3.2. Likelihood.

3.2.1. Component 1: Longitudinal Markers. We specify the model for the longitudinal
marker data as follows:

Xij |Bi,Si ∼ NQ (µ(tij ;Bi),Si) , j = 1, . . . , ni, independently for i= 1, . . . ,N,(5)

biq
indep.∼ NP (βq,Σq), q = 1, . . . ,Q,(6)

where NQ(µ,S) is a generic notation that represents a Q-dimensional multivariate Gaus-
sian distribution with mean vector µ and variance-covariance matrix S; µ(t;Bi) is a Q-
dimensional function of time given by Bi = [bi1, ...,biQ]

T and biq = (biq1, . . . , biqP )
T is

a vector of P regression coefficients for the q-th marker. Here P is the number of basis
functions of time; to simplify presentation in this paper, we assume the same number of
coefficients for each marker, e.g., intercept and slope. In our simulation and data applica-
tion, we specify these basis functions in advance to be linear functions of time. In addition,
βq = (βq1, . . . , βqP )

T is a vector of population mean regression coefficients that are specific
to the q-th marker. In addition, Equation (6) has assumed individual-specific regression coef-
ficients for any two markers are conditionally independent. Note that in this model, we have
given each individual a variance covariance matrix Si.

3.2.2. Component 2: Outcome Regression (OR) Model. The outcome variable Yi is as-
sumed to be related to individual-specific mean and variance-covariance parameters Bi and
Si in the longitudinal marker model (5) as follows:

Yi |Bi,Si,Wi ∼N
(
ηi, σ

2
)
, i= 1, . . . ,N,(7)
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where Wi = (Wi1, . . . ,Wid)
T is a vector of d time-invariant covariates; ηi = η(Bi,Si,Wi;α,γ,γ

W )
and η(·;α,γ,γW ) is a generic mean outcome regression parameterized by α (for Bi), γ (for
Si), and γW (for Wi); α, γ, and γW are of dimension PQ, Q(Q+ 1)/2, d, respectively.
In this paper, we will illustrate the statistical performance of such a formulation by focusing
on simple specifications of η(·), e.g., linear models. The framework readily generalizes to
general outcome models; in Section 6.2, we illustrate a model with a Gaussian scale-mixture
outcome regression model for waist circumference rate-of-change outcome.

3.3. Priors. In this section, we specify the prior and hyperprior distributions for the un-
known parameters in the two likelihood components.

Prior for Si. We rewrite Si =DiRiDi, where Di = diag(di1, ..., diQ) is a diagonal ma-
trix of residual variances and Ri is the associated subject-level correlation matrix. We assume

log(diq) ∼ N (νq,ψ
2
q ),(8)

independently for marker q = 1, . . . ,Q, and subject i= 1, . . . ,N . Because Ri is a correlation
matrix, we only need to specify the prior distribution for the off-diagonal elements. We con-
sider the special case of Q= 2, where r12i is unconstrained, and separately the general case
of Q> 2, where the components of Ri must meet the positive definite criterion.

Special Case: Q= 2.. For a 2× 2 correlation matrix, we place the following prior on the
off-diagonal value r12:

(ri12 + 1)/2∼ Beta(a′12, b
′
12), independently for i= 1, . . . ,N.(9)

Finally, we specify hyperpriors for νq , ψq and (a′12, b
′
12) by

νq ∼N (m,ξ2q ),ψq ∼ half-Cauchy(0, τ), independently for q ≤Q,(10)

a′12 ∼ Exp(κ), b′12 ∼ Exp(κ′).(11)

In our application, we setm= 0 and ξq = 10. In addition, we use a half-Cauchy hyperprior
on ψq instead of the inverse-Gamma distribution as this prior is recommended for datasets
where the signal of the variance ψq may be weak (Gelman, 2006). In this setting, inferences
using the inverse-Gamma distribution are extremely sensitive to the choice of hyperparameter
values (Gelman, 2006, p. 524), which makes the inverse-Gamma prior “not at all uninforma-
tive”. The half-Cauchy distribution avoids this potential issue due to its heavier tail, which
still allows for higher estimates of the variance, but constrains the posterior distribution “to
an extent allowed by the data".

REMARK 1. The defining feature of our framework is the individual-specific variance-
covariance matrices, {Si, i = 1, . . . ,N}, over which we must specify a hierarchical prior
distribution. Such priors must not be restrictive in capturing between-subject differences
and similarities in the variance-covariance matrices. Focusing on the prior specification
for individual-specific correlation matrices {Ri, i= 1, . . . ,N}, standard priors designed for
a single unknown population correlation matrix, e.g., Lewandowski-Kurowicka-Joe (LKJ)
prior (Lewandowski, Kurowicka and Joe, 2009), have severe drawbacks. In particular, the
LKJ distribution is governed by a single positive scale parameter, ζ , that tunes the strengths
of the correlations. The off-diagonal elements of a K ×K correlation matrix are marginally
distributed as: (rilk + 1)/2∼ Beta(a,b), where a= b= ζ − 1 +K/2. This implies that the
correlations will a priori be concentrated around 0. However, in our motivating application,
{rilk, i= 1, . . . ,N} represent the individual-specific residual correlations between the l- and
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the k-th hormone, which 1) by domain knowledge are a priori unlikely to have a strong prior
of being near zero, and 2) may vary between subjects in a way far from the implied distri-
bution of 2 · Beta(a, b)− 1. In Equation (11), we have removed this identity restriction and
specified hyperpriors on a and b, which provides greater flexibility in allowing the data to
estimate the true a and b. The same argument can be applied to using Inverse-Wishart distri-
bution as a prior for variance-covariance matrices, which is also governed by a single scale
parameter and suffers from the same drawbacks as the LKJ distribution.

There is little existing literature on hyperprior recommendations for the parameters of the
Beta distribution. Robert and Casella (2010) note that “there exists a family of conjugate
priors on a, b", however, they also note that these prior distributions are often intractable,
due to the “difficulty of dealing with the Gamma function”. Instead, we opt for a simpler
approach by allowing the a, b parameters to be independently drawn from an Exponential
prior. We argue that the Exponential distribution in Equation (11) is a reasonable choice for
a hyperprior as follows: Let x1, . . . , xn be data from a Beta(a, b) distribution. Assume that
a ∼ Exp(λa), b ∼ Exp(λb). We can also assume a and b are independent a priori. Then the
posterior distribution, p(a, b|x)∝ L(a, b)p(a)p(b)∝

∏n
i=1 exp(− lnB(a, b)+(a−1) lnxi+

(b− 1) ln(1− xi))× exp(lnλa − λaa+ lnλb − λbb)∝ exp(−n lnB(a, b) + a[
∑n

i=1 lnxi −
λa]+b[

∑n
i=1 ln(1−xi)−λb]), which suggests that the posterior distribution of a, b would be

updated from a flat prior by subtracting (λa, λb) from the sufficient statistics
∑n

i=1 lnxi and∑n
i=1 ln(1 − xi). The reason for this is that the Maximum Likelihood Estimators (MLEs)

for a, b respectively can be approximated by: âMLE =
1

2
+

Ĝx

1− Ĝx − Ĝ(1−x)

, b̂MLE =

1

2
+

Ĝ(1−x)

1− Ĝx − Ĝ(1−x)

where Ĝx = exp(n−1
∑n

i=1 ln(xi)), Ĝ1−x = exp(n−1
∑n

i=1 ln(1 −

xi)), where (a, b) > 1. The posterior modes using the Exponential priors become
1

2
+

Ĝx exp(λa)

1− Ĝx exp(λa)− Ĝ(1−x) exp(λa)
,
1

2
+

Ĝ(1−x) exp(λb)

1− Ĝx exp(λb)− Ĝ(1−x) exp(λb)
. When λa, λb −→

∞, the posterior modes of a, b shrink towards
1

2
, which is the Jeffrey’s prior. When λa, λb −→

0, we recover the likelihood. Overall, these results suggest that the choice of the Exponential
distribution is a flexible hyperprior on a, b and thus is a reasonable choice.

General Case: Q≥ 3.. For the general case of a Q×Q correlation matrix where Q≥ 3,
the off-diagonal values of the individual correlation matrices are now more complicated to
estimate since the space of valid correlation matrices is a proper subset of the space of all
possible Q × Q matrices. We address this constraint by following the approach of Ghosh,
Mallick and Pourahmadi (2021) where the off-diagonal values are parameterized in terms
of hyperspherical coordinates. The angles are allowed to vary freely over [0, π] before being
back-transformed into valid correlation values. To illustrate, we specify the prior for Ri for
when Q= 3 as follows (similarly for Q> 3):

r12 = cos(θ12), r13 = cos(θ13), r23 = sin(θ12) · sin(θ13) · cos(θ23) + cos(θ12) · cos(θ13),

where θ12 = arccos(c12), θ13 = arccos(c13), θ23 = arccos(c23), and

(ci12 + 1)/2∼ Beta(a′12, b
′
12), (ci13 + 1)/2∼ Beta(a′13, b

′
13), (ci23 + 1)/2∼ Beta(a′23, b

′
23).

As in the case where Q= 2, we specify hyper-priors for a′kl, b
′
kl, k < l, e.g., the Exponen-

tial prior.
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3.3.1. Priors for population longitudinal marker regression coefficients:.

βq ∼ NP (0, ξ
2
q IP×P ), independently for q = 1, . . . ,Q(12)

Σq =KqLqKq, Kq = diag{kq1, . . . , kqP }, q = 1, . . . ,Q,(13)

kqp ∼ half-Cauchy(0, τ0), p= 1, . . . , P, and Lq ∼ LKJ(ζ),(14)

independently for q = 1, . . . ,Q where Kq = diag{kq1, . . . , kqP } is a diagonal matrix and Lq

is a correlation matrix. The τ0, ζ parameters are set in practice as 2.5 and 1 respectively. It is
fine to use the half-Cauchy and the LKJ priors in Equation (14) since, for each marker q, they
are standard hyperpriors for a single population variance matrix Kq and a single population-
level correlation matrix Lq , which is different from Equations (8 - 9) that specifies the prior
for multiple and individual-specific variance-covariance matrices.

3.3.2. Prior for parameters in the outcome regression model. For the outcome model,
we place diffuse independent Gaussian priors for each element of the outcome regression
parameters (α, γ, γW ). Finally, to complete the prior specification, we place a diffuse prior
on the outcome residual standard deviation parameter σ ∼ half-Cauchy(0, τ1). In our simula-
tion studies and data analysis, we set the priors on the regression parameters as N (0,102) (a
weakly informative prior in order to allow the data to estimate the parameters) and τ1 = 2.5
(the default suggested by Carpenter et al. (2017)).

Let Z = (Bi,Si) and let Θ = (βq,Σq, ξ, νq,ψq, a
′
kl, b

′
kl,α,γ,γ

W , σ), where these sets
denote the unknown parameters of interest in the proposed model. Let π(Θ) denote the prior
distribution where we have assumed that all parameters in Θ have independent components:
π(Θ) = ΠQ

q=1[π(βq)π(Σq)π(ξq)π(νq,ψq)]Πk<l[π(a
′
kl, b

′
kl)]π(α,γ,γ

W ))π(σ).

3.3.2.1. Joint Distribution. The joint distribution of the data and unknown parameters is
then

P (Θ,Z,D)∝
n∏

i=1

Q∏
q=1

{ 1√
(2π)q|Σ|

exp(−1

2
(biq −βq)

TΣ−1(biq −βq))

× 1√
2πξ2q

exp

[
(log(diq)− νq)

2

2ξ2q

](
[(rikl + 1)/2]a

′
kl−1{1− ([(rikl + 1)/2]}b′kl−1

Beta(a′kl, b
′
kl)

)

×
ni∏
j=1

1√
(2π)|Si|

exp

(
−1

2
{Xij −µ(tij ;Bi)}TS−1

i {Xij −µ(tij ;Bi)}
)}

× 1√
2πσ2

exp

[
(Yi − η(Bi,Si,Wi;α,γ,γ

W ))2

2σ2

]
× π(Θ).(15)

Figure S1 in the Supplementary Materials uses a directed acyclic graph to visualize and
summarize the hierarchical relationships between the different components of our modeling
framework.

3.4. Posterior Inference. In a Bayesian framework, the inference is conducted based on
the posterior distribution P (Θ | D). However, it is not feasible to derive the closed-form pos-
terior distribution owing to the lack of prior-likelihood conjugacy in our proposed model.
We therefore used Hamiltonian Monte Carlo to draw sequential samples and approximate
the posterior distribution. We implement the model using Stan and the rstan package (Stan
Development Team, 2020) as the interface for running the model and obtaining the posterior
estimates. Code to run the joint model and generate the data used in our simulation studies
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are provided in attached supplementary files. For our simulations studies in Section 5.1, 5.2
and Section 3 in the Supplementary Material, we run two chains per independent replicate
data set, with 2,000 iterations and 1,000 burn-in. For the data application in Section 6, we
ran 4 chains each for 2,000 iterations with 1,000 burn-in. Visual inspection of the traceplots
for all model parameters indicated non-divergent chains (see Figures S4 and S5 in the Sup-
plementary Materials). All chains were combined for calculating posterior summaries.

We also examined Stan’s R-hat convergence diagnostic (Vehtari et al., 2021) and the Ef-
fective Sample Sizes (ESS) to determine if the chains had mixed well. The R-hat value for all
model parameters was less than 1.05. In the fat mass rate of change model, the ESS for all of
the model parameters was at least 100 times the number of chains used, except for the model
parameter corresponding to individual-level E2 variance and the parameter corresponding
to fat mass proportion at the first visit. The R-hat values of these two parameters was also
effectively 1.00 in both models. Based on these diagnostics, we concluded that our models
had converged. The posterior predictive checks we conducted (see S2 in the Supplementary
Material) suggest that our model generates reasonable estimates for the observed outcomes
and trajectories.

4. Alternative Methods. We briefly introduce three common alternatives in our com-
parative simulation study: two-stage simple linear model (TSLM), two-stage linear mixed
model (TSLMM), and two-stage individual-variance (TSIV) model. We refer to our joint
model as the “Joint Model with Individual Variances", or JMIV. We compare the perfor-
mance of JMIV to these alternative methods in Section 5.

4.0.0.1. Two-Stage Simple Linear Regression (TSLM). One of the most simple alternative
models we could use is the linear regression model in two stages. We used the lm() function
in R and first fit the following model:

Xijq = βiq0 + βiq1tij + ϵiq, q = 1,2.

Here, we will obtain β̂iq0, β̂iq1 via ordinary least squares estimates for the mean parame-
ters biq0, biq1. To estimate si11, si22, we collected the residuals from each regression, e.g.,
rij1 = (xij1 − (β̂i10 + β̂i11tij)), j = 1, . . . , ni, and computed the sample variance of these
residuals, which we term “estimated residual variance" for each individual, i.e., ŝi11; sim-
ilarly, we obtain rij2 and ŝi22. The residual covariance, ŝi12, was estimated by sample
covariance of (rij1, rij2). We then used linear regression to model the outcome based
on the estimated coefficients and residual variances and covariances from the first-stage
model: E(Yi | others) =

∑
q=1,2

{
αq1β̂iq0 + αq2β̂iq1 + γqq ŝqq

}
+

∑
q′<q γq′q ŝq′q. We then

performed a bootstrap procedure on the point estimates of each outcome parameter as fol-
lows: for i= 1, . . . ,1000 :

1. Resample the dataset with replacement
2. Run the outcome linear regression model described above
3. Save the estimated model coefficients

For each replicate, we saved the mean of the 1,000 point estimates as well as the 2.5th
and 97.5th quantiles of the 1,000 point estimates. We then used these 1,000 means and 95%
“CIs" to compute the bias, coverage, and average interval length.

4.0.0.2. Two-Stage Linear Mixed Model and Linear Regression (TSLMM). This alternative
is a slightly more sophisticated approach than TSLM. In the first stage, we fit a Bayesian
bivariate response linear mixed model with the brms package (Bürkner, 2017)

Xijq = βq0 + biq0 + βq1tij + biq1tij + ϵijq, q = 1,2.
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We chose to use a Bayesian framework for this model since fitting linear mixed mod-
els with multivariate outcomes is more complicated to implement in a frequentist setting.
Standard Bayesian software such as the brms package allows for easier implementation of
multivariate outcome linear mixed models. We place independent N (0,102) priors on the
intercept and slope parameters. We use the preset prior distribution for the random-effects
correlation matrix, an LKJ prior with scale parameter 1, as suggested by Bürkner (2017). For
all other prior specifications, we used the default prior settings in the brms package.

We approximated the “Bi” coefficients for each individual trajectory with the “overall"
coefficient estimates: B̂iq0 = β̂q0+ b̂iq0 and B̂iq1 = β̂q1+ b̂iq1, where β̂qp and b̂iqp, p= 0,1 are
the estimated posterior means of the fixed and random effects respectively. As in the previous
model, we estimated Si by computing the model residuals (e.g. Xijq − (B̂i0q + B̂i1qtij)) and
then computed the variance across all residuals. We also computed the residual covariance
to estimate of ŝ12. We then fit the same second-stage model as in the TSLM setup to get the
estimated posterior means and corresponding 95% confidence intervals for α and γ.

4.0.0.3. Two-Stage Individual Variances (TSIV) Model. Here, we fit the longitudinal out-
come model using Equations (5) and (6) only (together with their prior specifications in
Equation (9), (11) to (12)) and use the estimates of the posterior means, B̂i and Ŝi in the
model 7 (together with prior specifications 3.3.2). Note that we do not consider this to be a
practical alternative to our first two models, since if one goes to the effort of using a non-
standard multilevel model for subject-specific variance-covariance matrices, one might as
well go the extra step of bringing them together within a joint model. However, we do this to
investigate the effect of not propagating the statistical uncertainty across the two components
of the model.

5. Simulation Study. In this section, we present the results from simulation studies with
Q= 2 and Q= 3 biomarkers. Additionally, in Section S3 in the Supplementary Material, we
present a simulation study examining our model performance when we approximate the true
nonlinear relationship between the marker means and variances and the outcome as linear.

5.1. Simulation 1: Two Biomarkers.. In this simulation, we assume the mean trajectories
can be expressed linearly with individual intercepts and slopes. We generated ni = 6 to 15
time points for N = 1,000 individuals, which mimics the data used in Section 6. We then
simulated two trajectories for each individual using the following parameters.

Component 1: Longitudinal Markers .

Xitq = biq1 + biq2t+ ϵiq, q = 1,2;Bi1 ∼N2 (β1,Σ1) ,Bi2 ∼N2 (β2,Σ2)

;β1 = (0,2)T,β2 = (2,1)T,Σ1 =

(
1 −0.05

−0.05 1

)
,Σ2 =

(
1 −0.1

−0.1 0.5

)
;

log(di1)∼N (0,0.75)/2, log(di2)∼N (0.5,0.5)/2, (ri12 + 1)/2∼ Beta(1,5).

Component 2: Outcome Regression Model. To generate the outcome for each individual,
we assume Yi ∼N (η(Bi,Si), σ

2) and set

η(Bi,Si) = α11bi11 + α12bi12 + α21bi21 + α22bi22 + γ11si11 + γ21si21 + γ22si22,

where the true values of α,γ are α = (−3,−3,−3,3),γ = (2,−1,2); we did not include
other time-invariant covariates Wi. These particular truth values were chosen so that the
distribution of the outcome Yi would be similar to the distribution of the SWAN body mass
outcomes (our data analysis application). Lastly, we set σ2 = 1. We present the results for
R = 200 replicates in Table 3 for the outcome submodel parameters α, γ. See Table S5 in
the Supplementary Materials for the results for the other model parameters.
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5.1.1. Simulation I: Results. Table 3 presents the results of Simulation I. For the two-
stage linear regression model, we can see that the point estimates of the outcome model
parameters are attenuated towards the null. This result makes sense given what we know
about bias resulting from measurement error (Section 2.1). Furthermore, the actual coverage
rate is quite poor, especially for the regression coefficients of the variances and covariances
(γ).

Truth Model Bias Coverage (%) Average Interval Length

α11 = -3 JMIV 0.01 98.0 0.29
TSLM 0.30 8.0 0.37
TSLMM -0.01 93.5 0.38
TSIV -0.02 97.5 0.35

α12 = -3 JMIV 0.01 95.0 0.27
TSLM -0.07 83.0 0.31
TSLMM 0.00 94.0 0.34
TSIV -0.01 93.0 0.29

α21 = -3 JMIV 0.00 97.0 0.25
TSLM 0.46 0.0 0.29
TSLMM -0.01 92.5 0.40
TSIV -0.01 89.0 0.32

α22 = 3 JMIV -0.02 93.5 0.37
TSLM -0.38 5.5 0.44
TSLMM -0.01 97.0 0.49
TSIV 0.01 95.0 0.43

γ11 = 2 JMIV 0.01 94.0 0.52
TSLM -0.43 26.5 0.64
TSLMM -0.38 15.0 0.35
TSIV 0.03 76.0 0.41

γ12 = -1 JMIV 0.00 95.5 0.86
TSLM 0.38 62.5 0.94
TSLMM -0.41 31.0 0.62
TSIV 0.04 88.5 0.86

γ22 = 2 JMIV 0.00 98.0 0.43
TSLM 0.51 2.0 0.46
TSLMM 0.62 0.0 0.32
TSIV -0.01 88.5 0.40

TABLE 3
Simulation I: bias, coverage, and 95% credible interval (or confidence interval) length across 200 simulation

replicates. We compare our Bayesian joint model (JMIV) to the 1) simple two-stage linear regression (TSLM) 2)
the two-stage linear mixed model-linear regression (TSLMM) and 3) the two-stage individual variances (TSIV)

model. See Section 4 for details about the alternative methods.

For the TSLMM approach, the coverage and bias of the α parameters have significantly
improved compared to the TSLM approach, likely due to the linear mixed model appropri-
ately capturing the dependence between individuals’ data points (i.e., appropriately capturing
the measurement error in the mean parameters). However, TSLMM still has difficulty in re-
covering the coefficients of the variances and covariances, as can be seen by the poor coverage
and high bias of these parameters. This makes sense since this framework assumes that indi-
vidual random effects variability can be drawn from a population level variance-covariance
matrix (not capturing measurement error in the variance parameters). This result suggests
that if the individual variances and covariances do have an influential role in estimating the
outcome, neither TSLMM nor TSLM will be able to recover the true values of these param-
eters. Interestingly, the TSLMM results also show an attenuation towards the null for the γ
parameters, but not for the α parameters (although the bias is negligible). This indicates that
the TSLMM alternative is able to better estimate the individual intercepts and slopes, but not
the residual variability.

Compared to the TSLM and the TSLMM approaches, the TSIV approach has noticeably
better coverage and lower bias of the γ parameters. However, compared to our proposed
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JMIV, TSIV is still uniformly ‘worse‘ across the three metrics. The bias of the three γ pa-
rameters is higher when compared to the bias produced by JMIV. Also, none of the γ pa-
rameters have higher than 90% coverage across the 200 replicates and the average length of
the 95% credible intervals is higher than the 95% credible intervals from the JMIV approach.
Across all of the simulation replicates, JMIV achieved greater than 90% coverage of the true
parameters. JMIV also achieved low bias across the simulation replicates. We do note that the
average 95% CrI interval lengths are larger for the Ri parameters than for the Di parameters
(see Supplementary Material S5). This is likely due to the higher uncertainty in estimating
these correlation parameters, which has been captured appropriately. This higher uncertainty
is also likely the same mechanism behind the larger average 95% CrI interval length of the
γ12 parameter (corresponding to the covariance of the two trajectories). Overall, these results
demonstrate that our model is able to successfully recover the data generating parameters
while maintaining good coverage and low bias.

5.2. Simulation 2: Three Biomarkers. Here we again simulate ni = 6 to 15 time-
points each for N = 1,000 individuals. The simulated longitudinal data is generated by
Xitq = biq1 + biq2t + ϵiq, q = 1,2, where Bi1 ∼ N2 (β1,Σ1) ,Bi2 ∼ N2 (β2,Σ2) ,Bi3 ∼
N2 (β3,Σ3), and β1 = (0,2)T, β2 = (2,1)T, β3 = (1,1)T,

Σ1 =

(
1 −0.05

−0.05 1

)
,Σ2 =

(
1 −0.1

−0.1 0.5

)
,Σ3 =

(
1 −0.25

−0.25 1

)
,

log(di1)∼N (0,0.75)/2, log(di2)∼N (0.5,0.5)/2, log(di3)∼N (0,1)/2.

We first generate the following values (c12+1)/2∼ Beta(1,5), (c13+1)/2∼ Beta(1,5),
(c23+1)/2∼ Beta(2,2) and use the approach for Q= 3 markers described in Section 3.3 to
generate the individual correlation matrices, Ri.

Truth Model Bias Coverage (%) Average Interval Length

α11 = -3 JMIV 0.01 96.5 0.49
TSLM 0.83 0.0 0.65
TSLMM 0.00 93.5 0.69
TSIV -0.01 96.0 0.64

α12 = -3 JMIV -0.01 93.0 0.45
TSLM 1.02 0.0 0.53
TSLMM -0.01 94.0 0.62
TSIV 0.00 94.5 0.55

α13 = 3 JMIV -0.01 96.5 0.50
TSLM -0.57 4.5 0.86
TSLMM 0.03 93.0 0.74
TSIV -0.01 92.0 0.59

α21 = -3 JMIV -0.01 95.0 0.43
TSLM 1.20 0.0 0.60
TSLMM 0.003 95.0 0.73
TSIV -0.01 96.0 0.81

α22 = 3 JMIV -0.01 92.5 0.63
TSLM 0.85 2.5 0.36
TSLMM 0.02 93.5 0.90
TSIV 0.01 93.5 0.65

α23 = 3 JMIV -0.01 97.5 0.47
TSLM 0.14 82.5 0.67
TSLMM -0.02 91.5 0.65
TSIV 0.01 96.0 0.59

TABLE 4
Simulation II: bias, coverage, and 95% credible interval (or confidence interval) length across 200 simulation

replicates for the α parameters. We compare our Bayesian joint model (JMIV) to the 1) simple two stage linear
regression (TSLM) 2) the two stage linear mixed model-linear regression (TSLMM) and 3) the Bayesian two

stage model (TSIV).
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Truth Parameter Model Bias Coverage (%) Average Interval Length

γ11 = 2 JMIV -0.01 93.5 1.08
TSLM -0.11 82.5 0.67
TSLMM -0.44 43.0 0.80
TSIV -0.02 83.0 0.97

γ12 = -1 JMIV -0.04 92.0 1.66
TSLM -0.11 9.5 1.70
TSLMM 1.22 8.0 1.28
TSIV -0.08 91.5 1.77

γ22 = 2 JMIV 0.03 96.5 0.79
TSLM -0.76 2.5 0.71
TSLMM -1.24 0.0 0.59
TSIV -0.03 87.5 0.76

γ13 = -2 JMIV 0.03 94.5 1.91
TSLM 1.57 17.5 2.12
TSLMM 1.62 2.5 1.29
TSIV -0.06 82.0 1.78

γ23 = 2 JMIV 0.04 94.5 1.50
TSLM -0.98 30.5 1.56
TSLMM -0.92 14.5 1.03
TSIV -0.01 90.5 1.52

γ33 = 1 JMIV 0.01 94.0 0.54
TSLM 0.15 83.5 0.73
TSLMM -0.002 69.0 0.37
TSIV -0.02 64.4 0.42

TABLE 5
Simulation II: bias, coverage, and 95% credible interval (or confidence interval) length across 200 simulation
replicates for the γ parameters. We compare our Bayesian joint model (JMIV) to the 1) simple two stage linear

regression (TSLM) 2) the two stage linear mixed model-linear regression (TSLMM) and 3) the Bayesian two
stage model (TSIV).

For the outcome submodel, we set the true values of the regression coefficients as: α =
(−3,−3,3,−3,3,3),γ = (2,−1,2,−2,2,1), where these values were again chosen so that
the distribution of the outcome yi would be similar to the distribution of the SWAN body
mass outcomes. Lastly, we set σ2 = 1 (the variance parameter for the outcome).

We present the results of this simulation study in Tables 4 and 5. We note that the proposed
JMIV achieves above 90% coverage for both the mean (α) and variance-covariance (γ) pa-
rameters, which the other models fail to do. With respect to the α parameters, TSLMM and
TSIV both perform well in terms of both coverage and bias. However, substantial differences
in performance are present in the γ parameters. We see that that our model, JMIV, consis-
tently has lower bias except in the case of γ23 where TSIV achieves lower bias and γ33 where
TSLMM achieves lower bias. However, in both cases, JMIV outperforms the other models
in terms of higher coverage (substantially higher coverage in the case of γ33), indicating that
JMIV is still a better model choice.

6. Hormone Trajectories and Changes in Body Mass Across the Menopausal Tran-
sition. We examine the joint association of E2 and FSH on rate of change in fat mass and
waist circumference as women transition from the premenopause to the postmenopause us-
ing data from the Study of Women’s Health Across the Nation (SWAN). Previous research
with SWAN data has demonstrated that fat mass increases and lean mass decreases in a non-
linear fashion across the menopausal transition (Greendale et al., 2019). The rate of change
in body fat mass and lean mass accelerates approximately two years prior to the final men-
strual period (FMP) and persists until approximately 2 years after the FMP (Greendale 2013).
Body weight and BMI, however, have a consistent positive linear relationship throughout the
menopause transition, suggesting no unique menopausal effect on body weight or BMI de-
spite the changes to a more adverse body composition profile (i.e., more fat mass and less
lean mass). Given that increases in weight and fat mass in midlife contribute to women’s
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risk of chronic disease, improving understanding of the physiologic mechanisms that un-
derlie these increases is important. Yet, the association of mean body size parameters with
both mean E2 and mean FSH is complex, especially late in the menopausal transition and
into the postmenopause, because fat is a significant source of estrogen and a known negative
feedback regulator of FSH in the hypothalamus and pituitary. The role of fat in moderating
a woman’s endocrine profile may help explain why, in women who are obese, E2 is lower
prior to menopause and higher postmenopause while mean FSH is much lower, compared
to women who are not obese (Randolph et al., 2011). Since not all fat is metabolically equal
and functionally varies by anatomic distribution, a model that can evaluate the contribution of
individual variability in hormones would advance understanding of the complex relationship
between body composition and reproductive hormones.

In the predictor submodels, we specified a linear mean trend consisting of an individual
intercept and slope. We also explored higher order quadratic forms for the mean trend, but
found that the quadratic terms (e.g. E2 Intercept2) did not significantly predict either outcome
of interest, likely due to the sample size of our datasets, as well as the limited individual-level
information that remained after detrending the hormone population trends. In the outcome
submodels, we used the correlation between E2 and FSH rather than the covariance as a
variable of interest, since the correlation measure has a more straightforward interpretation
and is normalized to the E2, FSH variances.

Figure 3 shows the estimated trajectories from the model for two women in our dataset.
WWe do note that there is some undersmoothing regarding the observed residuals and the
model-predicted mean trajectories. The interpretation of the individual coefficients becomes
difficult, if not impossible, with a complex mean structure. Since our main goal was to re-
late the means, variances, and covariances of the hormone markers to the outcome while
preserving interpretability in the scientific application, we chose to proceed with the linear
intercept-slope mean model.

In the outcome regression model, we adjusted for the following covariates: fat mass body
weight proportion (or waist circumference) at the ‘first’ visit, race/ethnicity (White, Black,
Chinese and Japanese) and sports activity category. We included race/ethnicity in the models
given previous research using SWAN data that found differences in body mass composi-
tion changes among ethnic groups during the menopausal transition (Greendale et al., 2019,
2021). The physical activity category is a measure of the individual level physical activity
trajectories for each subject in the SWAN study, grouped into categories reflecting: (1) low-
est, (2) increasing, (3) decreasing, (4) middle, and (5) highest physical activity during follow
up. For a more detailed description, please refer to Pettee Gabriel et al. (2017). Tables 1 and
2 display the descriptive statistics for the individuals in our two analyses, including demo-
graphic and physical activity information. The following sections contain the results from
applying our joint model to the SWAN datasets.

6.1. Fat Mass Rate of Change. Table 6 displays the results of the fat mass model. For
ease of interpretation, the coefficients relating to the individual means (E2, FSH intercepts
and E2, FSH slopes) and the individual variances (E2, FSH variances and E2, FSH correla-
tion) have been multiplied by their respective sample standard deviation estimates. Table S3
in the Supplementary Material displays these SD estimates.

We found that the E2 intercept and the E2 and FSH slopes were all significantly associated
with fat mass rate of change. A one standard deviation higher E2 intercept (compared to the
population mean) was was associated with an average 0.11% increase in fat mass proportion
per year. Since E2 tends to decline over the menopausal transition, we can interpret the E2
coefficient as follows: one standard deviation lower E2 slope than the population average
was associated with a mean decrease of 0.09% in fat mass proportion per year. Conversely,
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Variable Post. Mean 2.5% CrI 97.5% CrI
E2 Intercept 0.11 0.05 0.17

FSH Intercept 0.02 -0.01 0.06
E2 Slope 0.09 0.02 0.17

FSH Slope -0.06 -0.11 -0.02
E2 Var. -0.03 -0.08 0.02

E2, FSH Cor. 0.01 -0.05 0.07
FSH Var. -0.03 -0.08 0.01

Fat Mass Prop. (First Visit) -2.97 -3.44 -3.51
Black -0.08 -0.16 -0.01

Chinese 0.01 -0.08 0.11
Japanese -0.32 -0.41 -0.24

Increasing Activity (Cat. 2) 0.02 -0.07 0.11
Decreasing Activity (Cat. 3) 0.07 -0.01 0.15

Middle Activity (Cat. 4) 0.01 -0.06 0.09
Highest Activity (Cat. 5) -0.09 -0.17 0.00

TABLE 6
Estimated posterior means and 95% credible intervals for the fat mass rate of change model. The variables
related to E2 and FSH (intercepts, slopes, and variances/correlation) have been standardized by the sample

standard deviation of their posterior estimates. The presented values have been multiplied by 102.

higher increases in FSH were negatively associated with fat mass rate of change, with a one
standard deviation increase in FSH (compared to the population average) being associated
with −0.06% increase in fat mass proportion per year.

Fat mass proportion at first visit was negatively associated with fat mass rate of change
(−2.97% decline per year). Black and Japanese women also had slower fat mass gains com-
pared to white women on average (−0.08% increase per year and −0.32% per year, respec-
tively).

6.2. Waist Circumference Rate of Change. Initially the Gaussian outcome assumption
did not appear to be a good fit for the observed outcome. In particular, the residuals suggested
overdispersed variances with a common mean, so we allowed the outcome to be modeled as
a mixture of two Gaussian distributions with equal means but different variances:

Yi|zi, η(Bi,Si,Wi), σ
2
1, σ

2
2 ∼N (ηi, σ

2
zi),

zi|π ∼ Bernoulli(π),

π ∼ Beta(1/2,1/2), σ1 ∼ half − Cauchy(0,2.5), σ2 ∼ half − Cauchy(0,5),

where zi is an unobserved indicator variable indicating membership in the first mixture com-
ponent; zi = 1 for the first component. Because the mean is equal across the mixture com-
ponents, the interpretation of the regression parameters will be the same as for the fat mass
models despite the additional variance parameter.

Table 7 displays the estimated coefficients for the waist circumference model. As in the fat
mass model, the coefficients related to the individual means and variances have been adjusted
by their respective sample standard deviations (also found in Table S3 in the Supplementary
Material). A one-unit higher E2 intercept (above the population mean) was associated with
an average 0.19 faster increase in waist circumference (cm/year). A one standard deviation
lower E2 slope was also associated with slower declines in waist circumference per year
(-0.26 cm/year). A higher individual FSH intercept was negatively associated with waist cir-
cumference rate of change; a one-unit higher starting FSH was associated with an average
-0.07 cm/year decrease in waist circumference.

E2 variability was negatively associated with the outcome, meaning that women with a
one standard deviation higher E2 variability had, on average, -0.11 cm/year decrease in waist
circumference. Neither FSH variability nor E2, FSH correlation were significantly associated
with changes in waist circumference.
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FIG 3. Plots of estimated hormone trajectories for two individuals from the waist circumference rate of change
model. The solid lines are the estimated individual mean trajectories, based on the posterior means of Bi, i.e.
b̂i0+ b̂i1t. The darker inner intervals around the solid lines are +/−1.64×var(̂bi0+ b̂i1t) and the lighter band
is +/− 1.64× σ̂iq , where σ̂iq is the square root of the estimated posterior mean of the individual level variance
of hormone q. The dotted lines represent +/− 1.64× σiq5 and +/− 1.64× σiq95 where σiq5, σiq95 are the
values of the 5th and 95th percentiles of the posterior samples of the individual variances for each hormone q.
The triangles and squares are the observed E2 and FSH residuals, respectively. The observed individual waist
circumference rates of change are shown in bordered boxes.

Variable Post. Mean 2.5% CrI 97.5% CrI

E2 Intercept 0.19 0.11 0.29
FSH Intercept -0.07 -0.13 -0.19

E2 Slope 0.26 0.16 0.37
FSH Slope -0.17 -0.11 -4.35

E2 Var. -0.11 -0.13 -0.03
E2, FSH Cor. -0.03 -0.12 0.06

FSH Var. -0.05 -0.82 0.11
Waist Circum. (First visit) -0.02 -0.02 -0.01

Black -0.08 -0.20 0.03
Chinese -0.30 -0.45 -0.16

Japanese -0.24 -0.38 -0.10
Hispanic -0.06 -0.33 0.21

Increasing Activity (Cat. 2) 0.00 -0.14 0.15
Decreasing Activity (Cat. 3) -0.04 -0.16 0.08

Middle Activity (Cat. 4) -0.09 -0.21 0.04
Highest Activity (Cat. 5) -0.13 -0.27 0.02

TABLE 7
Estimated posterior means and 95% credible intervals for the waist circumference rate of change model. The
variables related to E2 and FSH (intercepts, slopes, and variances/correlation) have been standardized by the

sample standard deviation of their posterior estimates.
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Unsurprisingly, waist circumference at first visit was negatively associated with waist
circumference change, meaning that women with a higher starting waist circumference
tended to have slower increases in waist circumference (-0.02 cm/year increase). Chinese
and Japanese women also had slower increases compared to white women on average (-0.30
cm/year increase and -0.24 cm/year increase, respectively).

7. Discussion. We have presented a joint modeling approach for estimating individual-
level mean and variance-covariance matrices based on longitudinal marker trajectories, which
are then linked to a cross-sectional outcome. Simulations show that our model outperforms
alternative approaches to this research problem. Our analysis of hormone trajectories data
revealed E2 variability had a statistically significant association with waist circumference
change, but not overall body mass composition, across the menopausal transition.

Our work is important for both methodological development of joint models and for
women’s health research. Our model estimates both mean longitudinal trends and the residual
variability of these individual trajectories, and propagates the estimation uncertainty into the
second submodel. This joint modeling is important for obtaining accurate estimates (in terms
of low bias, higher coverage and shorter interval lengths) of how the individual-level param-
eters are linked to the outcome. Simulation results demonstrate that our model outperforms
common two-stage approaches.

Substantively, our analyses are in line with the established literature on the associations
between average hormone levels and fat mass and distribution changes during menopause.
As noted above, the association of mean body mass with both mean E2 and mean FSH is
complex, especially as women transition into the postmenopause, because adipose tissue is
a significant source of estrogen and a known negative feedback regulator of FSH in the hy-
pothalamus and pituitary. The known E2 results are echoed by our analyses, which showed
a 1) positive relationship between increasing E2 and fat mass gains and 2) a positive rela-
tionship between increasing E2 and waist circumference gains and 3) a negative relationship
between increasing FSH and both outcomes of interest. However, evidence suggests that in-
creased FSH itself may directly influence adiposity by reductions in energy expenditure after
menopause Sponton and Kajimura, 2017; Kohrt and Wierman, 2017; Liu et al., 2017. Thus,
our findings of a negative relationship between increasing FSH and both outcomes of interest
do not support this recent work. This may be due to the complex and complicated relationship
of concurrent E2 changes during the menopausal transition.

However, the associations between individual-level variability and co-variability of two
hormones (E2 and FSH) and changes in fat mass and waist circumference, a surrogate for
fat distribution, had not been well explored. Previous analyses have either only evaluated
mean associations of E2 and FSH on health outcomes, or separately analyzed the hormone’s
variability. Early models of hormone mean trajectories were far too crude to assess individ-
ual variability or associations with fat distribution. Our analyses revealed that individual E2
variability was highly predictive of waist circumference changes, but not overall fat mass
changes. Since not all fat is metabolically equal and functionally varies by anatomic distribu-
tion, this finding could indicate that changes in fat distribution, in particular waist adiposity,
are more driven by E2 hormonal variability during menopause, while other factors could be
driving overall fat mass increases. Future analyses would be required to more fully investi-
gate that hypothesis. Additionally, this joint analysis of E2 and FSH can serve as a basis for
further investigation of how hormone variability and co-variability may affect other health
outcomes. As mentioned above, joint estimation of longitudinal variables and scalar out-
comes can be useful for investigating scientific questions in many areas. With longitudinal
biomarker data becoming more readily available (e.g. from wearable devices), we need sta-
tistical methods for analyzing these types of data. Our proposed method addresses the gap in
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methods by 1) providing a framework for jointly modeling longitudinal and cross-sectional
data and 2) explicitly modeling individual-level variability in the longitudinal trajectories,
which can improve understanding of the relationship between longitudinal predictors and
health outcomes.

7.1. Remark. In our simulation studies and SWAN data analysis, we made the simplify-
ing assumption to exclude covariates Wi in modeling the longitudinal markers (Equation 5).
In mathematical terms, this means that the likelihood functions of Xit,Bi,Si,Wi are:

f(Xit |Bi,Si,Wi) = f(Xit |Bi,Si),

f(Bi,Si |Wi) = f(Bi,Si),

where f is a generic notation for the probability density function. For the scientific applica-
tion, our main focus was to evaluate the overall marginal effects of the biomarker hormone
means and variances on the body mass outcomes of interest. In particular, the effects of the
variance and correlation parameters were of key interest, since the associations between in-
dividual E2 and FSH variabilities (and co-variability) and body mass changes had not been
previously explored. The estimated coefficients for the Bi,Si described in Section 6 should
be interpreted as marginal effects, rather than conditional on the other adjusted covariates.
For this particular scientific application, we believed that this assumption resulted in a more
straightforward interpretation of the mean, variance, and correlation parameters. The deci-
sion to include or exclude Wi in the longitudinal submodel should be made with the specific
research application in mind and whether or not the simplifying assumption makes sense for
the particular context.

7.2. Future Work. One extension of this work could be to model the individual variances
as being functions of time, i.e. Sit. E2 and FSH are known to be highly variable as women
approach their final menstrual cycle, so estimating Sit may better capture such changes in the
biomarker variances. To obtain these estimates, we would likely need a larger dataset (with
both more individuals and timepoints) than is currently available with the SWAN study. An-
other methodological extension could be to extend this model to account for missingness in
both the trajectory data and the outcome data. For this analysis, we removed the missing val-
ues in the hormone data and only analyzed individuals with observed body mass outcomes.
Although less than 5% of the values in our dataset were missing, analyzing complete case
data only could still result in slightly biased inference. In the SWAN dataset, individuals can
be subject to intermittent missingness as well as dropout; these types of missing data patterns
could be addressed in future work. It may be of interest in future applications to simultane-
ously model multiple cross-section individual outcomes, as our outcome submodel specifica-
tion only considered univariate outcomes. Exploring Bayesian semi-parametric approaches
to modeling the subject specific parameters, e.g. with a Dirichlet process prior on the un-
known parameters, would be another methodological extension. In addition to the increased
model flexibility, this could also allow for clustering of individuals with similar mean trajec-
tories and/or residual variances and covariances. Finally, we note that increasing the number
of longitudinal trajectories may result in a form of η(·) in the OR model that is complicated
to estimate, since the number of variance-covariance parameters increases quadratically with
the number of trajectories. Some type of dimension reduction procedure may be useful in
these settings, although retaining interpretability may be challenging.
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