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1 Introduction

The matrix kinship model Caswell (2019) projects the expected age structures of the kinship
network of a Focal individual. The initial one-sex, time-invariant, age-classified model has
been expanded to include stage structure (Caswell, 2020), time-varying rates (Caswell and
Song, 2021), both sexes (Caswell, 2022), and bereavement and causes of death (Caswell,
Verdery, and Margolis, 2023). This paper focuses in on one important part of the kinship
network: the lineage of descendants, in subsequent generations, of Focal (children, grand-
children, . . . ). I will derive a model to project the age or stage structure of successive
generations. The model admits the possibility of generation-dependent demographic rates.
It makes it possible to compute a variety of measures of multigenerational overlap, and it
permits the distinction between one-sex and two-sex definitions of lineages.

Lineages are delicate; the stochastic nature of survival and reproduction imply the possi-
bility of extinction of a lineage. The model also leads to a new analytical calculation, based
on a multistate, multitype branching process, for the probability of persistence or extinction
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of lineages, including the possibility of generation-dependent rates, and accounting for the
properties of lineage founders and for one-sex and two-sex definitions of lineages.

The word ‘generation’ has multiple meanings in current discourse (e.g., Duffy, 2021).
My focus here is on biological generations; if Focal is in one generation, her children form
the second generation, their children form the third, and so on. Mapping this well-defined
concept onto generations defined by social events (boomers, gen X, millenials, and so on) is
an open research question.

In Section 2 I present the deterministic kinship model and in Section 3 extend it to
project the dynamics of generations. Section 4 develops the stochastic version of this model
and uses it to calculate the dynamics of extinction probability.

2 The matrix kinship model

A brief overview of the matrix kinship model follows. The network of Focal is shown in
Figure 1. Each kin type is denoted by a unique letter. The network can be extended if
desired. In the time-invariant version of the model the dynamics of the age distribution of
some type k of kin are

k(x+ 1) = Uk(x) + β(x) x = 0, . . . , ω (1)

k(0) = k0 (2)

where k(x) is the age structure vector for this type of kin at age x of Focal and β(x) is the
the recruitment vector of new kin. New kin might be created by reproduction of some other
type of kin, in which case

β(x) = Fk∗(x) (3)

where k∗(x) is the age structure vector of the other type of kin (e.g., granddaughters of Focal
are produced by daughters of Focal). For some kin, the recruitment term is zero (e.g., Focal
cannot accumulate any older sisters after she is born).

An initial condition k0 must be specified, giving the age structure of the kin at the birth
of Focal. For some types of kin, the initial condition is zero (e.g., we know that Focal has no
daughters at the time of her birth). For other types of kin, the initial condition is calculated
as a mixture over the age distribution π of mothers at the birth of Focal (e.g., the older
sisters of Focal at her birth are the daughters of Focal’s mother at her age at the birth of
Focal). For calculation of this distribution, see Caswell (2019).

2.1 The model for lineages and generations

The lineage of descendants of Focal comprise a population jointly classified by age and
generation. We project the lineage of these descendants with a multistate age×generation-
classified matrix

Ã = Ũ + F̃ (4)

with age classes (1, . . . , ω) within generations (1, . . . , γ). As an example, consider three
generations (Focal, daughters, granddaughters); then

Ũ =

 U 0 0
0 U 0
0 0 U

 F̃ =

 0 0 0
F 0 0
0 F 0

 (5)
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Figure 1: The kinship network of Focal, with the lineage of descendant generations highlighted.
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Figure 2: One-sex and two-sex lineages
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Let k1,k2, . . . ,kN denote a sequence of N generations. For the three-generation case, the
projection is k1

k2

k3

 (t+ 1) =

 U 0 0
0 U 0
0 0 U

 +

 0 0 0
F 0 0
0 F 0

 k1

k2

k3

 (t). (6)

The survival and transition matrix U appears on the diagonal of Ũ because individuals within
a generation age, but cannot move to another generation. The fertility matrix F appears on
the subdiagonal of F̃ because the fertility of each generation provides new offspring to the
next generation.1

2.2 One-sex and two-sex lineages

The lineage of descendants of Focal may be defined through one sex only (e.g., daughters,
granddaughters as daughters of daughters, etc.) or through both sexes (sons and daughters,
grandchildren as the children of sons and daughters, etc.). Many times in history an obsession
with one-sex (usually male) lineages has characterized royal or noble families. This model
accommodates both of these possibilities.

Caswell (2022) has presented a flexible two-sex version of the matrix kinship model. It
classifies individuals by both age and sex, and operates with matrices containing female and
male survival, and female and male fertility. Various approximations are possible in this
context, depending on whether separate female and male rates are available. The extreme
case uses the same rates for both sexes; since females and males are indistinguishable in this
model, it is called the androgynous approximation. It corresponds to the factors used by
Goodman, Keyfitz, and Pullum (1974) to translate numbers of female offspring to combined
numbers of males and females under the same assumption.

It can be shown that equation (5 projects both sexes of kin when F gives children of both
sexes per mother, and projects single lines of descent when F gives daughters (or sons) per
mother. The two-sex fertility is used in computing total fertility rates (TFR); the one-sex
fertility is used in calculating net reproductive rates (R0).

Thus if F is in terms of children per mother, the two-sex lineage projection under the
androgynous approximation is

k̃(t+ 1) =
(
Ũ + F̃

)
k̃(t) (7)

and the single-sex lineage projection is

k̃(t+ 1) =
(
Ũ + 0.5F̃

)
k̃(t) (8)

Of course, if separate male and female rates were available, they could be incorporated,
doing away with the necessity of the androgynous approximation.

1Note that this formulation makes it easy to incorporate survival or fertility rates specific to each gen-
eration. This is not equivalent to time-specific demographic rates. Generation-specific rates could be useful
for studying maternal effects (e.g., Hernández et al., 2020; van Daalen et al., 2022, for rotifers), epigenetic
effects, and intergenerational transmission (e.g., Mare, 2011; Lee, 2003). The common expectation that one’s
children will have better lives than one’s self refers not to a change in time (i.e., not that things will be better
next year) but that things will be better for members of the next generation, no matter the year in which
they appear.
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Figure 3: Projections of total descendant numbers by generation for Japan with 1947 and 2019
rates. Each curve represents one generation.

3 Generations: projection and overlap

As an example2, I analyze the generation projection using rates for Japan in 1947 and in
2019. This time difference saw a dramatic change in the demography, from a low survival,
high fertility, increasing population to a high survival, low fertility, decreasing population.

1947 2019 %change

life exp 54 87 +61%

TFR 4.61 1.34 −70%

R0 1.7 0.7 −59%

Figure 3 shows the total numbers of descendants in generations 1–10 under these two sets of
rates.

The number of descendants and their overlap are clearly visible in the example. Note
that these results show the total number of descendants, but are obtained by integrating over
the age distribution in each generation at each time. Thus it is easy to calculate the overlap
of particular parts of the age distribution in a series of generations.

4 Generations: persistence and extinction

Then this is a day of independence
For all the Munchkins and their descendants . . . if any.

The Wizard of Oz (1939)

Because the generation model is formulated as an age×generation matrix model, it is,
like any matrix model, the expected value operator of a multitype branching process (Harris,
1963; Caswell, 2001). A general stage-classified theory was presented in Caswell (2001, Chap.
15). This theory includes that of Pollard (1966) as a special case. It is tailored to the model
structure of a population projection matrix, and my approach here follows it as closely as
possible. From this model, the probability of extinction can be calculated.

This is not the place for a detailed derivation (which will appear in a final paper). Suffice it
to say that the extinction probability is calculated using the probability generating functions

2This example will probably be replaced by the time of the conference.
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Figure 4: Extinction probability as a function of time for one-sex and two-sex lineages, using rates
for Japan in 1947 and 2019. Maximum of 20 generations.

(pgfs) for transitions and for reproduction. The vector X is the age-generation distribution
of new copies produced by an individual in stage j. These individuals are the sum of the
copies by transition and by reproduction. Given independence, the pgf is the product of the
multinomial distribution from U and the binomial distribution from F:

G
(j)
X (s) = G

(j)

Ũ
(s) G

(j)

F̃
(s). (9)

We are now in a position to calculate extinction probability as a function of time. Let q̃(t)
contain the probabilities of extinction, by time t, for lineages started by a single individual
in each age-generation combination. Then

q̃(t+ 1) = G̃X

(
q̃(t)

)
(10)

As is well known, extinction probability goes to 1 if λ ≤ 1, and converges to a value less than
1 if λ > 1, where λ is the growth rate from the matrix (4).

4.1 The dynamics of extinction probability

Figure 4 shows some results that give an idea of the kind of dynamics that I will explore more.
It compares extinction probability, starting with a single newborn individual in generation
1, based on the demographic rates of Japan in 1947 and 2019.

This figure deserves careful attention. Under 1947 rates, λ > 1 for one-sex and two-sex
lineages. For both, the extinction probability reaches an asymptote, with the two-sex lineage
having a lower probability, as makes sense. However, both probabilities abruptly jump to
an extinction probability of 1 after about 700 years.This sudden transition occurs because
there is an extinction barrier built into the model; in F̃. In equation (5), note that after the
three generations shown, there is no subsequent generation to continue. Whenever the last
members of the third generation die, the lineage is extinct.

The asymptote reflects the well known theorem (Harris, 1963, Theorem 8.1) that, with
probability 1, every lineage either goes extinct or escapes towards infinity. Those that do
escape become large enough that extinction becomes vanishingly rare. Thus if the model
contains enough generations to permit an asymptote, that represents the lineage extinction
probability.
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The right side of Figure 4 shows the results for Japan under 2019 rates. Under these rates,
λ < 1 for the one-sex lineage, and λ > 1 for the two-sex lineage. The extinction probability
for a one-sex lineage under these conditions converges smoothly to 1. If the lineage is defined
by both sexes, the probability of eventual extinction is less than one. Including both sexes
thus rescues the lineage.

From results such as this it is possible to examine in detail the impact of the demographic
rates on the probability of extinction, or persistence, of a lineage.

5 Beyond this extended abstract

This is probably enough for an extended abstract. Here are some points about the rest of
the study.

Asymptotic extinction probability. The asymptote apparent in Figure 4 can be calcu-
lated directly by appending a persistent state after the last generation.

Founders of lineages. Extinction probability can be calculated as a function of the age of
the founder (trivially, a lineage founded by a single post-reproductive female has no
chance of persistence), or of a group of individuals of any specified ages.

Survival analysis of lineages. The quantity 1−q̃(t) is a survivorship function for lineages.
Rescaling and conditioning on extinction provides the distribution of ‘age (in years) at
death’ for extinct lineages. Other survival analyses are possible.

But there’s more. Comparing q̃(t) calculated with different limits on the number of
generations provides a distribution of extinction by generations, complementing the
distribution by time. This has never been possible before, as far as I know.

Variation, by generation and by time. The analyses shown here are for fixed demo-
graphic rates. The same calculations would apply to rates that vary from generation
to generation. The theory for time variation in branching processes is much more dif-
ficult. However, the population projection results of Section 3 apply directly to time
varying rates.
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