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Introduction
Over the past two centuries, populations around the globe have experienced a re-
markable increase in the average length of life (Riley, 2001; Oeppen and Vaupel,
2002). Whether this is a normatively desirable outcome or not depends, inter alia,
on the health quality in which those longer lives are lived. In fact, living longer
does not necessarily imply living more years in a healthy state, and the relationship
between mortality and morbidity has been the subject of a longstanding debate
with fundamental implications for the sustainability of pension and health care
systems all over the world (Grunenberg, 1977; Fries, 1980; Manton, 1982).

Unfortunately, currently existing methods to investigate the intertwined relation-
ship between mortality and morbidity have typically ignored the number of years
individuals spend unhealthy. A good example is the Sullivan method, which com-
bines disease/disability prevalence data with mortality information to estimate the
average number of years individuals are expected to live in “good” or “less-than-
good” health (Sullivan, 1971). In this paper, we propose an extension to the classic
life table (Preston et al., 2001), the so-called “triangular life table”, with the aim
of taking into account not only the ages at which individuals die, but also those
in which they cease to be in full health (i.e., the age at morbidity onset). Impor-
tantly, this novel approach allows to incorporate duration (i.e., the time spent in
different states) and investigates how survival and morbidity jointly evolve across
all possible ages.

Methodology
We consider a three-state model (see Figure 1) with two “living” states, healthy (H)
and unhealthy (U), and a “dead” state (M - for mortem). We assume individuals
are born healthy and cannot experience transitions between U and H, meaning
that if their health deteriorates, no recovery is possible. Adopting this perspective,
we aim at modelling the onset of major chronic diseases, which are the leading
causes of death and disability in most low-mortality countries. If we denote with x
the length of life, h the amount of years spent in H, and u the amount of years spent
in U , the relationship x = h+ u will hold and the model will translate graphically
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Figure 1. Our three-state model:
healthy H, unhealthy U , dead M . We
assume no transition is possible be-
tween U and H, implying that recovery
is not contemplated.
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Cells aligned on the same diagonal 

correspond to the same length of life 

𝑥, that can be reached cumulating 

different amounts of healthy years ℎ 

and unhealthy years 𝑢 

Number of individuals dying 

between age 𝑥 = 3 and 𝑥 + 1 = 4 , 

who have spent ℎ = 1 years in good 

health and 𝑢 = 2 years in poor health 

Figure 2. Example of a column in the new life
table. Here presented the case of observed deaths
1Dx(h, u). The symbol ω denotes the maximal
attainable lifespan.

in two different trajectories on a (h, u) plane: one being horizontal, indicating
sustained health throughout one’s life, and the other resembling a “mirrored-L”,
indicating the emergence of health issues at some point in one’s life.
We propose a new period life table, where we follow a synthetic cohort of individuals
throughout their lives, assuming that at every age they are exposed not only to the
observed mortality pattern of a population, but also to its morbidity experience.
The various quantities of the classic life table are age-specific. Here, they depend
on the amount h of years of life spent in a healthy state, and the amount u of years
spent in an unhealthy state. Instead of calculating rates, probabilities, person-
years, and other metrics for each specific age x, they are computed for different
combinations of h and u, such that x = h+ u. In this way, the “original” life table
columns become triangular tables, as exemplified in Figure 2. For simplicity, we
consider single-age intervals and assume transitions between H and U happen at
the beginning of the interval.

Implementation
The crucial step in constructing a period life table involves transforming the ob-
served age-specific death rates into age-specific probabilities of dying. In our model,
the are two possible trajectories to death: never getting unhealthy and then dying
(H → M), and getting unhealthy at some point in the lifespan and then dying
(H → U → M). This implies that supplementary information is needed to com-
pute the new life table: transition rates, from H to U , to be converted into the
corresponding transition probabilities. In this section, we present how we derived
these rates and probabilities, following Preston et al. (2001). In the classic frame-
work, the number of individuals in the synthetic cohort dying between age x and
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x+ 1 (1dx) is computed as

1dx = ℓx − ℓx+1 (1)

where ℓx is the proportion of individuals who survived to age x, ℓx+1 to x+ 1.
In this new setting it becomes

1dx(h, u) = ℓx(h, u)− ℓx+1(h+ 1, u)− ℓx+1(h, u+ 1) (2)

In essence, the number of deaths in the cohort between ages x and x+1 for individ-
uals who have spent h years in good health and u years in poor health (h+u = x)
can be calculated by subtracting the count of those who survive to age x+ 1 with
either an additional year of good health, ℓx+1(h + 1, u), or an additional year in
poor health, ℓx+1(h, u+ 1), from the population alive at age x with h years spent
in good health and u years in poor health, ℓx(h, u).1

Let 1Lx(h, u) denote the number of person-years lived by the cohort between ages
x and x + 1 with h years spent healthy, and u years spent unhealthy. Then, the
death rates 1mx(h, u) between ages x and x+1, for individuals with h years spent
in health and u with a health condition are

1mx(h, u) =
1dx(h, u)

1Lx(h, u)
(3)

and the corresponding probability of dying is

1πx(h, u) =
1dx(h, u)

ℓx(h, u)
. (4)

It is worth mentioning that, depending on the value of u, this formula provides the
probability of both possible transitions to death. In fact, if u = 0, Eq. (4) returns
the probability of dying in good health at age x = h; for u > 0, it represents the
chance of dying at age x = h + u, having spent an initial h years healthy and the
remaining u years unhealthy. Instead, the transition rates 1wx(h) from H to U , at
age x = h are given by

1wx(h) =
ℓx+1(h, 1)

1Lx(h, 0)
(5)

and the probability of becoming unhealthy after h years spent in health is

1π
HU
x (h, 0) =

ℓx+1(h, 1)

ℓx(h, 0)
. (6)

Now

1Lx(h, u) = ℓx+1(h+ 1, u) + ℓx+1(h, u+ 1) + 1ax(h, u) 1dx(h, u) (7)

where ℓx+1(h+ 1, u) = 0 for u > 0, and 1ax(h, u) is the average number of person-
years lived by members of the cohort who died between ages x and x + 1 having
spent h years healthy, and u unhealthy.

1Note that, since U is an absorbing state, ℓx+1(h+ 1, u) will be zero if u > 0.
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Emulating Preston et al. (2001), combining (2) and (7) we obtain the two following
conversion formulae

1πx(h, u) =
1mx(h, u)

1 + (1− 1ax(h, u)) · 1mx(h, u)
(8)

1π
HU
x (h, 0) = 1wx(h)

1 + (1− 1ax(h, 0)) · 1mx(h, 0)
(9)

that allow us, from the observed death and H → U transition rates, to compute
all the remaining columns of the life table. The next section outlines the steps to
be followed.

Constructing the Period Triangular Life Table
The new framework we propose decomposes the length of life x in the sum of years
spent in a healthy state h, and the amount of years spent in an unhealthy state u.
Consequently, both the inputs and the outputs of the table will need to be derived
for all the possible combinations of h and u, such that x = h+ u.
Before proceeding, we want to point out that this has an impact on the terminal
age interval. In this context, an open-ended interval from a certain age x∗ becomes
less straightforward than in the one-dimensional case, as it would cover the whole
positive surface above the triangle with vertices (0, 0), (0, x∗) and (x∗, 0) in the
h − u plane. For instance, if x∗ = 90, where should an individual aged 95 with
h = 91 and u = 4 be allocated? Since the answer to this type of questions is not
clear, we exclude all the observations with age older than a set value ω.
Three observed quantities are needed to produce the period triangular life table.
With the only difference that they now depend on h and u, the first two are
shared with the traditional approach: the mid-year population in age interval x
to x + 1, denoted as 1Nx(h, u), and the number of deaths between ages x and
x+1, 1Dx(h, u). The third is specific to this setting and consists in the number of
transitions H → U between ages x = h and x+ 1, 1Ux(h).
From this data, the observed mortality rates, 1Mx(h, u), and the observed transi-
tion rates, 1W x(h), are obtained as

1Mx(h, u) =
1Dx(h, u)

1Nx(h, u)
1W x(h) =

1Ux(h)

1Nx(h, 0)

Then, the procedure to compute the main columns of the life table can be outlined
in a total of twelve steps.

1. Calculate the set of age-specific death rates 1mx(h, u) for every x = h + u.
Assume that 1mx(h, u) = 1Mx(h, u).

2. Calculate the set of age-specific H → U transition rates 1wx(h) for every
x = h. Assume that 1wx(h) = 1W x(h).

3. Adopt a set of 1ax(h, u).
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4. Compute the probability of dying 1πx(h, u), as

1πx(h, u) =
1mx(h, u)

1 + (1− 1ax(h, u)) · 1mx(h, u)
.

5. Compute the probability of becoming unhealthy 1π
HU
x (h, 0)

1π
HU
x (h, 0) = 1wx(h)

1 + (1− 1ax(h, 0)) · 1mx(h, 0)
.

6. Compute the remaining probabilities

• The probability of surviving healthy between ages x = h and x+ 1

1π
HH
x (h, 0) = 1− 1π

HU
x (h, 0)− 1πx(h, 0).

• The probability of surviving unhealthy between ages x = h+u and x+1

1π
UU
x (h, u) = 1− 1πx(h, u).

7. Choose a value of l0, the radix of the life table.

8. Working sequentially from the youngest age to the oldest, calculate

ℓx+1(h+ 1, 0) = ℓx(h, 0) 1π
HH
x (h, 0)

ℓx+1(h, u+ 1) = ℓx(h, u) 1π
U
x (h, u)

where 1π
U
x (h, u) = 1π

HU
x (h, u) for u = 0, and 1π

U
x (h, u) = 1π

UU
x (h, u) for

u > 0.

9. Derive
1dx(h, u) = ℓx(h, u)− ℓx+1(h+ 1, u)− ℓx+1(h, u+ 1).

10. Derive the person-years lived between ages x and x+1 with h years spent in
health and u with a chronic condition as

1Lx(h, u) = ℓx+1(h+ 1, u) + ℓx+1(h, u+ 1) + 1ax(h, u) 1dx(h, u).

11. Derive the person-years lived above age x = h+ u

• If u = 0

Tx(h, 0) =
ω∑

a=h

1La(a, 0) +
ω∑

a=1

1La+h(h, a).

• If u > 0

Tx(h, u) =
ω∑

a=u

1La+h(h, a).

12. Derive life expectancy at age x = h + u, with h years spent healthy and u
years spent unhealthy as

ex(h, u) =
Tx(h, u)

ℓx(h, u)
.

This formula divides the number of person years that will be lived above age
x by the number of individuals who will live them.
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Contribution
The life table is one of demography’s pillars. When facing the necessity to jointly
study mortality and morbidity, three different life table models come to mind:
prevalence based life tables, double decrement life tables (DDLT) and multistate
life tables (MSLT) (Rogers et al., 1990; Schoen, 1988).
The Sullivan method (SM) (Sullivan, 1971) is an alternative name of the first.
Notwithstanding all its acknowledged limitations (Rogers et al., 1990; Barendregt
et al., 1997), it is still widely employed due to its simplicity, both in intelligibility
and data requirements. The triangular life table (TLT) and the SM differ on
multiple aspects, the most important being the perspective they adopt, dictated by
the input they require. The TLT utilises occurrence-exposure rates, while the SM
relies on prevalence rates. This implies the need of longitudinal data for the first,
while cross-sectional surveys are enough for the second. Both methodologies do
not admit recovery, even if one could argue that Sullivan’s prevalence orientation
implicitly permits it from one observation time point to the next, although not
directly modelling it.
The triangular life table shares more ground with double decrement life tables:
both need the same inputs and, again, exclude health improvements. However, in
DDLTs individuals exit the population not only when they die, but also when their
health deteriorates. This does not happen in our framework. When they transition
from health to less than good health (H → U), individuals start to accumulate
unhealthy years (quantified by u) that will then influence their remaining life.
Many scholars indicate the multistate life table as the most accurate method to
measure longevity and morbidity. When built on the same state space as ours, it
models transitions including recuperation of health (U → H), making it a more
realistic representation of the the human life course. Like the triangular life table,
it computes age-specific transition probabilities from incidence rates. Nevertheless,
as the previously mentioned methodologies, multistate life tables implicitly assume
an underlying Markov process governing these transitions, and the probability
that an individual will leave a state depends only on the state and the age of the
individual, not on the time spent in that state over the years. We believe the main
strength of the life table proposed in this paper is the ability to overcome this
assumption and incorporate duration, and all the information it carries. Attempts
to relax the Markov assumption can be traced back to more than thirty years
ago, when Wolf (1988) developed a modification of MSLTs to accommodate for
duration dependency. The so-called multistate life table with duration-dependence
(DDMSLT) is a multistate model where dependency is converted in a categorical
variable and included in each state. The triangular life table can be considered
a simpler and more intuitive version of the DDMSLT, with the nice addition of
innovative graphics to help understand the studied phenomena.
In theory, the TLT does not require more data than the MSLT, but it exploits it
more. We record not only when transitions between two states happen, but also the
time elapsed before they happen. Indeed, as already pointed out multiple times,
the triangular life table, at its current development, does not permit recovery.
This is a feature we intend to investigate and incorporate in the future, since
the recuperation of health plays a strong role in extending healthy life (Rogers
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et al., 1990). However, the definition of “unhealthy” as the emergence of a chronic
condition justifies the exclusion of a U → H transition.
One of the main goals when computing a life table is the derivation of life ex-
pectancy (LE). It is a simple metric to understand, both for scientists and the
general public, and it can be used to effectively inform policy makers. The ex-
pectancies calculated via Sullivan, double decrement and multistate life tables
summarise information related to the health states separately : healthy life ex-
pectancy (HLE) and unhealthy life expectancy (ULE), to give an example. From
the triangular setting, an indicator reflecting the whole health trajectory experi-
enced (combinations of h and u) can be extracted, incorporating both dimensions
of health simultaneously.
Apart from the “usual suspects” discussed above, it is worth to also mention mul-
tiple time scales models. Carollo et al. (2023) recently demonstrated the method
using the same basic illness-death model we adopt, resulting in a triangular repre-
sentation similar to the one presented in this paper. However, our objectives and
approaches differ significantly: we develop a life table-oriented technique, while
they lean towards an event history analysis direction.

Data
The empirical data we will have access to and that will be used in the complete
version of the paper is extracted from the mortality and health records for the entire
population of Denmark (roughly 5.8 Million inhabitants) which have been updated
yearly since 1986. Such records capture the ages at which individuals residing in
the country die or are diagnosed from one of the following major chronic diseases:
diabetes; myocardial infarction; angina pectoris; other diseases of the heart; stroke;
chronic bronchitis/chronic obstructive pulmonary disease/emphysema; cirrhosis of
the liver; malignant tumor; parkinsonism; Alzheimer’s disease and chronic renal
failure. Linking mortality and health information, we are able to compute age-
at-first-diagnosis and age-at-death for all individuals dying at a given year, from
which we infer the corresponding values of x, h and u.

Future Outlook
The paper will feature an application of the developed methodology using the data
previously described for the years between 2000 and 2020. This empirical section
has a twofold objective. Firstly, we are interested in the study of two surfaces
that can be produced with the triangular life table: the survival function ℓx(h, u)
and the age-at-death distribution 1dx(h, u). Through identifying their properties,
potential shapes, and observing their changes over time, our goal is to provide
new insights into the evolution of mortality and morbidity. Figure 3 presents
stylized/simplified examples of graphs we expect to create for the survival function
ℓx(h, u) (analogous figures can be easily created for the corresponding age-at-death
distributions 1dx(h, u)). While our current dataset is limited to Denmark, our ob-
jective is to initiate the collection of technical information on these two surfaces.
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Figure 3. Example of possible plots for ℓx(h, u). Data manually generated. Maximum lifespan
ω = 5.

Looking ahead, we aspire to investigate whether they exhibit recurring patterns or
behaviours across countries.

Secondly, the triangular life table can be used to address fundamental questions
regarding the dynamics of mortality and morbidity. We intend to compare differ-
ent time periods, to see, for instance, if remaining life expectancy at a certain age
x, with a certain amount of years spent with a chronic condition u, has increased,
remained stable or, even, decreased. Likewise, we will explore the relationship
between the number of years individuals have lived in good and in less-than-good
health (i.e., h and u) at time at death. Finally, we plan to construct separate trian-
gular life tables for males and females to conduct further analyses on sex differences.

Relevance
Studies investigating mortality dynamics typically assume that gains in longevity
are desirable no matter what. However, the fact that a non-negligible and poten-
tially large and increasing fraction of individuals’ lifespans are composed of years
spent in less-than-good health questions the validity of this assumption. The trade-
offs between the quantity of years of life and the “health quality” of those years
could affect our assessments of populations’ and individuals’ health performance.

The tools presented in this paper allow estimating how individuals’ lifespans are
composed of years spent in good and in less-than-good health at time at death. An-
alytically, the possibility of breaking down individuals’ length of life (x) as the sum
of time spent in different health states (h+u) is a major breakthrough with respect
to currently existing frameworks to investigate (healthy) population ageing. The
new approach opens the possibility of going beyond state-of-the-art methods to ad-
vance our knowledge about the complex interplay between mortality and morbidity.
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In particular, it allows revisiting under a new light the longstanding ‘compression
vs expansion of morbidity’ debate (Grunenberg, 1977; Fries, 1980; Manton, 1982).
Rather than relying on the comparison of average-based indicators that ignore
the amount of time that individuals spend in “less-than-good” health (like Life Ex-
pectancy and Healthy Life Expectancy (Jagger et al., 2020)), the method proposed
here takes into consideration the different ages at which individuals’ health starts
deteriorating, thus offering the chance to get a more comprehensive understanding
of contemporary health and mortality dynamics.
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