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Abstract

We model the influence of selected ancillary processes that partially account for trends of obesity

prevalence in modern populations. These include vertical inheritance of obesity-related genetic

variants, gene-environment interactions, phenotypic assortative mating, and differential fertility.

These processes operate in the background modulating the effects of more proximate determinants

of obesity, including environments and individual behaviors. Modelling these processes sheds

light on the spatial diffusion and intergenerational transmission of the phenotype under conditions

determined by macro, micro, and mediating molecular factors affecting individuals’ obesity risks.

The models we use for these processes and their interactions combine Leslie matrices and Agent

Base Models.



1 Introduction1

The human obesity epidemic is a result of a heterogeneous set of factors that vary across time and2

space. There is agreement that an accounting framework of the epidemic should include distant3

macro (distal) determinants, such as modern food production and distribution and built-in environ-4

ments, more proximate micro conditions such as individual preferences and choices responsible5

for caloric intake and expenditures, and mediating pathways such as molecular mechanisms that6

regulate energy management and tissue growth, storage, and composition1. This accounting frame-7

work, however, does not include background processes that operate as vehicles of the spatial dif-8

fusion and intergenerational transmission of the phenotype. In this paper we model four ancillary9

processes: i) vertical genetic transmission or inheritance (GH), (ii) gene-environment interactions10

(GxE), (iii) assortative mating (AM), and (iv) differential fertility (DF). As outcomes of interest11

we use BMI and WHO-defined obesity categories2. Mechanisms for GH and GxE drive the inter-12

generational transmission of the phenotype whereas those associated with AM and DF indirectly13

strengthen (attenuate) the impacts of the other two. Importantly, our models are anchored on input14

parameters whose values depend on empirical estimates generated in multiple areas of research.15

We are not the first to propose models that track the obesity epidemic (Dawson et al., 2013; Ejima,16

Thomas, & Allison, 2018; Giabbanelli, Alimadad, Dabbaghian, & Finegood, 2012; Huang, Yan,17

Chen, & Liu, 2016; Levy et al., 2011; Morshed et al., 2019; Shoham et al., 2015). Our paper18

is guided by these previous formulations and aims at enhancing them by including processes and19

relations not considered previously.20

We address the following questions:21

1. How strong is the contribution of vertical genetic inheritance to population prevalence of22

obesity?23

2. How large can the impact of known gene-environments interactions (GxE) be on future24

1For a recent and very thorough overview of determinants of obesity, see ‘Causes of Obesity: Theories, Conjec-
tures and Evidence’, The Royal Society of London, October 17-19, 2022: https://royalsociety.org/science-events-and-
lectures/2022/10/causes-obesity

2https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
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trends of the phenotype?25

3. How sensitive are population levels of obesity prevalence to changes in phenotypic and social26

assortative mating? How do changes in assortative mating alter vertical genetic heritability of27

the trait? Can increases in assortative mating be an important driver of the obesity epidemic?28

4. What is the impact of differential fertility by BMI or obesity status? Is the magnitude of29

the effect modified by changes in assortative mating? Can reductions of assortative mating30

offset effects of differential fertility by obesity status?31

To answer these questions we use formal models and assess first and higher order impacts of32

the ancillary processes. We will focus on differences in parameters of the BMI distribution and33

levels of obesity prevalence in the short term (5-10 generations). Our goal is not to forecast future34

trends but, rather, to produce an informed and empirically defensible assessment of the influence35

of ancillary process and their interrelations, a necessary step before undertaking any forecasting36

exercise.37

The paper is organized as follows: Section 2 is a review of ancillary processes; Section 338

introduces two classes of models to represent them; Results are in Section 4, and in section 5 we39

review shortcomings and suggest future lines of investigation.40

2 Ancillary processes41

There is agreement that an accounting framework of the epidemic should include macro determi-42

nants, such as modern food production, distribution and built-in environments, micro conditions43

that shape individual preferences regulating caloric intake and expenditures, and mediating path-44

ways consisting of molecular processes of energy management, tissue growth, storage, and compo-45

sition3. Modern environments to which an increasing number of human populations are exposed,46

include conditions that lead to excess caloric intake, sedentarism, degraded nutritional quality of47

3See footnote 1.
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food staples, and calorie dense foods whose ingredients can promote fat tissue growth or disrupt48

metabolic functions. All of these factors promote imbalanced in caloric intake/expenditures that re-49

sult in excess fat storage and are referred to as ’obesogenic environments’ (Flegal, Carroll, Ogden,50

& Johnson, 2002; Popkin, 2011; Popkin, Corvalan, & Grummer-Strawn, 2020; Swinburn et al.,51

2011). They emerge rather abruptly after 1950 within a population genetic context largely shaped52

by ancestral adaptations evolved by natural selection that oftentimes clashes with modern condi-53

tions. The nature of the disharmony is the subject of controversy and may involve thrifty genes54

(Neel, 1999), thrifty phenotypes (Hales & Barker, 1992), drifty genotypes (Speakman, 2013), and55

crafty genotypes (Wells, 2012).56

There is no doubt that characteristics of modern obesogenic environments and human evolu-57

tionary constraints are central to an understanding of modern obesity trends. But, in addition, there58

are distinct forces that promote the spatial diffusion and transmission of the phenotype across gen-59

erations. These are ancillary processes operating in the background that could augment (diminish)60

the impact of obesogenic environments and mismatches with ancestral adaptations. Because they61

may account for an important fraction of short and long term variability within and between popu-62

lations and over time, they should be considered explicitly. In particular, mechanisms responsible63

for GH and GxE directly account for intergenerational transmission of the phenotype whereas64

those associated with (ii)-(iv) have indirect effects that reinforce or attenuate the influence of the65

other two4.66

2.1 Vertical genetic inheritance67

Human obesity can be classified into two broad categories, monogenic and polygenic. Monogenic68

obesity is severe and has an early onset, but is quite rare. It involves small or large chromosomal69

deletions or mutations in a handful of genes, particularly those controlling the leptin signaling70

pathway (Bouchard, 2021; Loos & Yeo, 2022). Polygenic obesity (or ’common obesity’) is a result71

4There are three additional ancillary processes we do not study here, namely, vertical cultural transmission, ma-
ternal vertical inheritance (‘maternal constraints’), and cultural horizontal transmission (’intragenerational inertia’).
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of hundreds of polymorphisms, each of which has very small effects on storage and distribution of72

adipose tissue and the production of hormones and cytokines that originate in fat issue. Thus, the73

phenotype is partially genetically inherited. Studies based on nuclear families (including offspring-74

parents pairs, siblings, adopted and foster children and MZ and DZ twin pairs), estimate that75

heritability of BMI (and obesity) and other metrics of fat deposit distribution (waist-to-hip ratio),76

are in the range of .30-.90, with the majority of values concentrated around .60 (Bouchard, 2021;77

Yengo et al., 2018). These estimates are likely inflated by unmeasured shared environments and78

possibly by the contribution of gene-environment interactions.79

Recent GWAS studies identify hundreds of SNPs that collectively explain no more than 6% -80

10% of the phenotype (obesity or BMI), thus leaving a large unexplained gap as missing heritability81

(Abadi et al., 2017; Brandkvist et al., 2019; Fall & Ingelsson, 2014; Goodarzi, 2018; Khera et al.,82

2019; Qasim et al., 2018; Rohde et al., 2019; Wang et al., 2011; Yengo et al., 2018).5 These83

studies find closely related genomic regions that regulate fat deposition and storage and code for84

proteins expressed in brain tissues. Some genes regulate addiction-reward brain pathways and85

are involved in traits associated with obesity (reproduction, immune function, tissue growth and86

repair). Also, there is no evidence that these genes (and those associated with them by Gamete87

Phase Disequilibrium (GPD)) have been subjected to recent selection pressures, a finding that88

supports the so-called two-intervention point conjecture about the origin of the modern obesity89

epidemic (Speakman, 2013, 2018; Speakman, Djafarian, Stewart, & Jackson, 2007).90

The above suggests two inferences. First, it is highly unlikely that the sudden global increase91

in obesity is a result of changes in the gene pool because the time span involved is too short, the92

genetic diversity at the base of the trait is too large, and footprints of selection pressure of gene93

variants associated with obesity are missing (Speakman, 2018). We explore the possibility that94

increased assortative mating plays a role in recent trends by modifying genotypes distributions95

and, therefore, explain part of the heterogeneity within and between populations. Second, and96

related to our goal, the fact that the phenotype of interest is highly polygenic suggests that the97

5For a very accessible description of the nature of GWAS studies and their foundation on DNA sequencing, see
(Mills, Barban, & Tropf, 2020).
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vertical genetic component of an obesity model should be represented by a synthetic indicator of98

genetic penetrance, such as a Polygenic Risk Score (PRS) for BMI (obesity), instead of including99

effects of one or a handful of identifiable loci6.100

2.2 Gene-Environments interactions, GxE101

We would expect high levels of GxE interaction effects in populations that experience sharp con-102

trasts between ancestral and modern environments. Mismatching is more likely to happen among103

individuals with high genetic predisposition to high body weight who live in obesogenic settings104

that differ sharply from ancestral ones under which they may not have been significantly affected105

by their genetic propensity. In fact, it has been shown that when placed in more obesogenic envi-106

ronments, some individuals experience larger increases in BMI than expected given their genotypes107

(Huangfu, Palloni, Beltrán-Sánchez, & McEniry, 2023; Walter et al., 2016). Although GxE inter-108

actions effects will influence aggregate obesity trends and can alter the composition by genotypes109

of some population subgroups, they cannot directly change genotypic frequencies of subsequent110

generations.111

2.3 Assortative mating112

An important mechanism of the evolution of polygenic traits is the nature of the population mating113

regime. To the extent that mating is random relative to the phenotype (or genotype), genotype fre-114

quencies involving alleles associated with the phenotype will remain constant across generations,115

and the trait’s evolution will be a function of other forces (drift, gene flow, and selection). However,116

when individuals mate non-randomly, genotype frequencies (though not allelic frequencies) will117

change and deviate from Hardy-Weinberg equilibrium, potentially contributing to the evolutionary118

trajectory of the phenotype.119

6It is possible that epigenetic changes may contribute to the phenotype as a result either of fetal exposures or ver-
tical maternal (paternal) inheritance (Bateson & Gluckman, 2011; Fall, 2011; Godfrey et al., 2011; Herrera, Keildson,
& Lindgren, 2011; Kempf et al., 2022; Ling & Rönn, 2019; Sharp et al., 2017; Vickers, 2014; Waterland & Jirtle,
2003). In what follows we ignore the role of epigenetic modifications.
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Assortative mating by BMI or obesity can be either phenotypically driven or the result of social120

homogamy. Preference for partners’ physical appearance is culturally and socially defined and can121

result in deviations from random mating. It is known, for example, that there are societies in which122

mates choose among the most obese as the trait is a sign of wealth, health, or good luck (Macchi,123

2022). Departures from random mating can also be the result of social and cultural stratification,124

that is, when the set of suitable partners is constrained by membership in social classes, residential125

location, ethnicity or religious affiliations. This is important in the case of obesity since, at least126

in high income countries, recent increases in obesity are disproportionately concentrated among127

individuals of low socioeconomic status (SES). Because mating in these populations is non-random128

relative to SES, it will also lead to assortative mating by the phenotype.7129

Because BMI is partially genetically determined, couples that resemble each other are more130

likely to be genetically similar (Abdellaoui, Verweij, & Zietsch, 2014; Domingue, Fletcher, Con-131

ley, & Boardman, 2014) and thus influence their offspring genotype and phenotype. In addition,132

however, pairings of individuals with similar body shapes can have non-genetic, cultural impacts133

on their offspring phenotypes. Both types of obesity assortative mating entail the formation of134

parental household settings that could strengthen (discourage) the creation of obesogenic ’local’135

environments associated with social class, residential location, religion or ethnic-specific practices.136

This opens a gateway through which parental risks are passed on to offspring not just through ge-137

netic variants but through shared environments (vertical cultural inheritance8). The creation of lo-138

cal, household-based, obesogenic environments may also have a feedback effect as it can reinforce139

assortative mating in subsequent generations either via imprinting or through parental influences140

on offspring mate choices (Kong et al., 2018; Zietsch, Verweij, Heath, & Martin, 2011).141

Assortative mating increases the frequency of homozygosity and its ultimate effects on the142

phenotype distribution is a function of the number and penetrance of loci associated with the phe-143

notype. The smaller is the set of genes responsible for the trait and stronger is their penetrance, the144

7A similar argument may apply to place of residence, religion, ethnicity, etc.
8There has been a rapid growth of research on these non-genetic parental influences (Boyd & Richerson, 1988;

Cavalli-Sforza’ & Feldman, 1973; Cavalli-Sforza & Feldman, 1981; Costa-Font, Jofre-Bonet, & Le Grand, 2020;
Feldman & Ramachandran, 2018; Uchiyama, Spicer, & Muthukrishna, 2021; Wells, 2011; Willyard, 2014)
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larger will be the impact of assortative mating on the trait’s evolution9 and through it augment the145

genetic variance of the trait. Also, when assortative mating is strong, it can increase gametic link-146

age disequilibrium (GLD) which is itself a factor that increases additive genetic variance (Hedrick,147

2016).148

There is empirical evidence that assortative mating by body weight is non-trivial and that its149

strength has increased over time, hand in hand with the prevalence of the phenotype (Ajslev, 2012;150

Hebebrand et al., 2000; Power et al., 2011; Speakman, Djafarian, Stewart, & Jackson, 2007).151

Furthermore, some data suggest that the strength of assortative mating may be higher in subpopu-152

lations located at the upper tail of the BMI distribution (Ajslev, 2012; Bouchard, 2021; Jacobson,153

Torgerson, Sjostrom, & Bouchard, 2006). If this finding is confirmed more generally, prevalence154

of obesity could increase even under constant genetic penetrance, thus enhancing the influence that155

assortative mating has on increases of BMI and obesity prevalence.156

2.4 Fertility differentials157

An important determinant of the increase of obesity prevalence over time is the differential rate of158

growth of the obese and non-obese subpopulations. In the absence of significant pre-reproductive159

mortality between these two subgroups, differences in rates of growth must be accounted for by160

gross reproduction rates (GRR) (possibly weighted by parent-offspring vertical cultural heritabil-161

ity). Fertility differentials will also influence the timing of trajectories of BMI and obesity. From162

first demographic principles, we know that even if there is a successful intervention that reduces163

the net reproduction rate of the obese population to 1, the rate of growth of obesity prevalence will164

continue to increase for some time afterward, and so will any existing obesity differentials by SES165

(Keyfitz, 1971).166

Human GRR depends on male-female fecundity, on the one hand, and on lifetime fertility167

conditional on fecundity, on the other. In humans, obesity influences both fertility and fecundity168

but in ways that offset each other. There is strong empirical evidence showing that both male and169

9Assortative mating will increase the association between distant loci (Yengo et al., 2018).
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female obesity impair fecundity (Craig, Jenkins, Carrell, & Hotaling, 2017; Sermondade, 2012;170

Silvestris, de Pergola, Rosania, & Loverro, 2018)10.171

However, obesity (and BMI) is also associated with GRR as a result of factors ostensibly un-172

related to fecundity. Thus, empirical evidence from high-income countries (HIC), suggests that173

GRR is positively related to BMI, that the relation is strong and increases over the life cycle of174

individuals (Swan & Colino, 2021). It is likely that this positive association is due to common175

influences rooted in socioeconomic conditions.176

In some, not all, low-income countries, the association between fertility and obesity is negative177

(Pampel, Denney, & Krueger, 2012; Vazquez & Cubbin, 2020) though the reverse may be true178

in high SES subgroups11. The existence of both positive and negative relations is consistent with179

the fact that, during the first stages of the epidemic, the association in HIC is weakly positive or180

negative. It is quite possible that LIC are in the early stages of the process and that a positive181

relation will also prevail as they move through future stages.182

3 Models183

We aim to assess the effects of different assortative mating regimes under varying conditions of184

vertical genetic inheritance, GxE interactions, and fertility differentials by body weight. Although185

there is a voluminous literature on each of these, there are few studies that attempt to integrate them186

into a coherent model to account for obesity trends (Dawson et al., 2013; Daza, S. & Palloni, A,187

2022; Ejima, Thomas, & Allison, 2018). The modeling approach we propose is simplified because188

it ignores three ancillary processes (identified in footnote 4). Despite this and with some caveats189

we will state later, the model is complex enough to approximate the relative contribution of the190

processes included in it.191

We use two modelling approaches. The backbone of the first is based on Leslie matrices whose192

10In contrast, empirical evidence from animal studies shows that the genetic propensity to higher body weight is
associated with higher fecundity and gross reproduction rates (Allison et al., 1996; McAllister et al., 2009). This is
likely due to a direct impact of excess adipose tissue on reproductive capacity.

11See Supplementary Material for empirical evidence of this relation.
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properties shed light on the nature of relations between the various components. The second ap-193

proach consists of an Agent Based Model (ABM). Each approach has its own strengths and weak-194

nesses but they complement each other and, despite their differences, lead to similar inferences.195

3.1 Leslie matrices196

We follow a modification of a stable population approach first employed by Preston and Camp-197

bell to study IQ trajectories (Preston & Campbell, 1993). Instead of dealing with the population198

distribution by age, as is done in standard stable population applications, we focus on generation-199

specific distributions of the population in four BMI classes12. We employ the WHO classification200

and define four categories: underweight (BMI ≤ 18.5), normal weight (18.5 < BMI ≤ 25), over-201

weight (25 < BMI ≤ 30), and obese (BMI > 30). To represent intergenerational changes in the202

vector of obesity categories, we define a matrix of transition probabilities that depends on mating203

rules, net fertility, and vertical inheritance probabilities.204

Let the distribution of the first generation by obesity status be given by a 1x4 row vector BMI(0)205

and that of the subsequent generation by BMI(1). These two vectors are related as follows:206

BMI(1) = BMI(0)×N ×R×H = BMI(0)×Σ (1)

where N is a 4x16 matrix of mating probabilities of pairing between obesity categories that207

produces 16 classes of couples, R is a 16x16 matrix of fertility rates for the 16 classes of couples208

and, finally, H is a 16x4 matrix of genetic heritability, containing the probabilities of offspring209

allocation by obesity status conditional on the obesity status of each parent13. The mating (N)210

and fertility (R) matrices are defined to accommodate different combinations of mating rules and211

differential fertility by obesity status. These two matrices are fixed and deterministic, e.g. their212

entries are not influenced by random variation and remain constant throughout. In contrast, entries213

12Throughout we will ignore the role of age and assume that couple formation and childbearing occur at the mean
age of childbearing.

13Full description of these matrices is in Section 1 of Supplemental Materials.

9



of the heritability matrix, H, can be either fixed or changing across generations and, furthermore,214

may or may not contain random components.215

When H is fixed and deterministic, the second generation’s distribution by categories will be216

BMI(2) = BMI(1)×N ×R×H = BMI(0)×Σ
2 (2)

where Σ2 is the square of the matrix product N ×R×H.217

More generally,218

BMI(t +1) = BMI(t)×N ×R×H = BMI(0)×Σ
t (3)

When H changes across generations, we will have219

BMI(t +1) = BMI(0)×Π
t ×Σ(t) (4)

where Πt is the tth power of the product of matrices N and R, and Σ(t) is the product of220

H(0),H(1)...,H(t).221

In the section that follows we define rules for assortative mating, fertility differentials, and222

heritability14.223

3.1.1 Rules of assortative mating224

To specify assortative mating rules, we define a one-parameter continuous function, ω ∈ [0,1].225

When its value is 0 the mating regime is completely random and when it is 1 the mating regime is226

completely endogamous, e.g. individuals only mate within their obesity category. Other ω values227

within the closed interval [0,1] define mixed regimes. Let πi, be the ith entry of the row vector228

BMI(t) corresponding to the fraction of individuals in obesity category i. The probability that an229

individual belonging to category i mates with a partner in the same category is:230

14A full empirical justification of the values of the input parameters that define these rules is in Section 3 of
Supplementary Materials.
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pii = πi +(1−πi) ·ω (5)

Because the sum of over all j of pi j must add up to 115, the probability of mating with individ-231

uals from a different BMI category (i ̸= j) is232

pi j = (1−ω) ·π j (6)

The probabilities from equations (5) and (6) fully specify the entries of matrix N (see (S1) of233

Supplemental Material).234

3.1.2 Size and direction of fertility differentials235

Regimes of differential fertility are specified in a manner analogous to assortative mating. We236

assume a strictly positive association between fertility and BMI and define a continuous, one-237

parameter function, ϕ ∈ [0,1]. A couple whose members are in obesity categories i and j will238

produce a number of offspring given by239

fi j = 2+(i+ j−6) · ϕ

2
(7)

The magnitude of the differential is maximized when couples formed by two individuals in the240

categories (i, j = 4), have 3 children whereas couples consisting of two underweight individuals241

(i, j = 1), have none. When there are no fertility differentials, all couples have two offspring. The242

values fi j from equation (7) fully specify the entries of the diagonal fertility matrix R defined in243

the Supplemental Material.244

3.1.3 Vertical genetic inheritance245

We formulate two variants of the heritability matrix H. The first has deterministic and generation-246

invariant entries. The second matrix’s entries include a random component and change across247

15In this version of the model, all individuals find a partner.

11



generations.248

1. A one biallelic locus for obesity (constant H):249

We assume a one biallelic locus responsible for the phenotype obesity and that the obesity250

allele, A, is dominant over the non-obese allele, a16. We then employ standard Mendelian251

segregation rules to define H and determine the offspring phenotypic distribution. Because252

this matrix remains invariant throughout, the population distribution by obesity categories253

at time t + 1 will be given by expression 4. Also, because Σ is irreducible and primitive,254

the system is ergodic and the population distribution by categories converges to a stable255

distribution that depends only on Σ, not on the initial distribution BMI(0)17. The entries of256

H are defined by simple Mendelian rules applied to a one biallelic locus. The probabilities257

of an obese offspring according to combinations of parental phenotype are:258

Table 1: Probabilities for offspring phenotypes as a function of parents’

Parents 2 obese 1 obese, 1 non-obese 2 non-obese

Child obese 8/9 2/3 0

Child non-obese 1/9 1/3 1

Children with a non-obese phenotype are then distributed in the three lowest BMI categories259

as a function of their parents’ BMI categories, as described in Supplemental Materials. These260

probabilities, p(k|i j) will be the entries of the matrix H.261

2. Multiple loci for BMI (time dependent H or H(t)):262

The second variant of the matrix approach assumes multiple loci with variable penetrance,263

each with small effects on the phenotype of interest (BMI), summarized by a BMI polygenic264

risk score (PRS). Because the offspring’ PRS depends on her parents’s PRS and a random265

component18, the entries of the matrix H(t) (∀t) are random and, importantly, depend on t.266

16None of the inferences regarding the role of the ancillary processes change when the obese allele is the recessive
one or when the heterozygotes’ phenotype is determined as a function of a dominance parameter.

17The mathematics of transformations of an initial population distribution by age groups using an invariant transi-
tion matrix is well-known in demography and ecology (Caswell, 2000; Keyfitz,N., 1977).

18See below and Section 1 of Supplementary Material.
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To define numerical values for H(t)’s entries we start out with observed distributions of267

PRS and BMI in 1,568 intact couples (3,136 individuals) with DNA information in the 2006268

wave of the Health & Retirement Study19.These individuals play the role of generation 0,269

G0, and we will use their PRS as well as the observed relation between their PRS and BMI270

to determine their offspring’s (generation G1) values of PRS and BMI (and corresponding271

obesity category). This is done in four steps:272

• Formation of couples in the first generation, G0: we use the set of 1,568 intact couples273

in the 2006 HRS’ wave including their information on BMI and PRS. We then assign to274

each couple a random number of children following a Poisson distribution with mean275

2. Thus, at least initially, there is no association between realized fertility and BMI276

(obesity). The set of offspring defines generation G1.277

• Allocation of offspring’ PRS in G1: after fusion of gametes, the zygote genome is278

composed of approximately half of maternal and paternal genes. To reflect this, we279

compute G1’s PRS as the arithmetic mean of their G0 parents’ plus a random term to280

represent inherent stochasticity as in S8. The random component is scaled so that the281

offspring PRS distribution is normal (0,1), as is that of their parents’.282

PRSo f f =
PRSpar1 +PRSpar2

2
+η(µ = 0,σ = 0.7) (8)

• Assignment of offspring’ BMI in G1: This is done using estimated parameters for a283

simple linear relation between BMI and PRS observed in the G0 sample. The estimated284

relation is285

BMI = 27.796+1.071×PRS+ ε(µ = 0,σ = 4.55) (9)

19Health and Retirement Study, RAND HRS Longitudinal File 2023, public use dataset. Produced by the RAND
Center for the Study of Aging (Santa Monica, CA.) with funding from the National Institute on Aging and the Social
Security Administration and distributed by the University of Michigan with funding from the National Institute on
Aging (grant number NIA U01AG009740).
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The value of σ is scaled so that the variance of the BMI distribution is identical to the286

observed one in G0. We then assign obesity categories to members of G1 according to287

their predicted BMI. This last step defines matrix H(0). 20
288

• Couple formation in G1: After classifying members of G1’s couples by obesity cate-289

gories, we pair them up according to the mating rules, that is, a fraction 1−ω of the290

total target couples (N/2) pair up ramdomly and then match the remaining individuals291

within their BMI category (endogamously).292

• Assignment of offspring in G1: we assign to each G1 couple a number of offspring293

(G2) according to differential fertility rules21.294

Subsequent generations are computed by repeatedly applying the steps described above.295

To reflect the presence of GxE in well-defined environments and subpopulations, we296

will also allow increases of the parameter for penetrance in equation (9), α = 1.0715.297

To do so, we will define the penetrance parameter as :298

α = 1.071 · (1+ p) (10)

with p attaining values 0, 0.1, and 0.2.299

Because the values of PRS and BMI in each generation after G0 are functions of random nor-300

mal variates (σ and ε), we assign values of PRS and BMI to each individual in a generation301

by (independently) randomly draws from normal distributions, N(0,σ) and N(0,ε). This is302

done for all generations we simulate. The collection of distributions by obesity categories303

defines a single realization of the sequence of matrices (H(0),H(1),H(2), ...H(T )) associ-304

ated with one combination of parameters or set of rules. We repeat this process 20 times305

gathering 20 different realizations associated with those rules. To summarize results of these306

20The correlation of BMI and the PRS for BMI in the sample of 3,136 individuals is ρ = 0.23.
21The expression for fi j from equation (7) may result in a fractional number of children, between n and n+1, say

n+v, where 0 ≤ v ≤ 1. In order to convert this figure to an integer we randomly assign integer n with probability 1−v
and n+1 with probability v.
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20 realizations, we compute means and standard deviations of the outcomes of interest (BMI307

and PRS distributions and obesity prevalence)22.308

3.2 ABM model309

The matrix approach has an important advantage in that the time trajectory of the population distri-310

bution by obesity categories is associated with matrix properties that can be completely specified.311

The disadvantage is that it cannot easily represent individual behavior(s) and, as a consequence,312

is not flexible enough to integrate features additional to those considered in the paper. For exam-313

ple, inclusion of horizontal heredity via peers or residential location renders the matrix treatment314

cumbersome or outright intractable.315

An ABM approach is useful when the dynamic of a system cannot be transparently translated316

into a formal representation (such as Leslie matrices). It is flexible enough to integrate multiple317

processes, interactions between them, and complex feedback mechanisms. An ABM model can318

be easily defined to integrate peers’ influence and other potential sources of life course changes,319

vertical maternal inheritance, and characteristics associated with individuals’ residential location.320

An example of a model with some of these properties was developed by Giabanelli and colleagues321

and validated using data from the National Longitudinal Study of Youth (NLSY) (Giabbanelli,322

Alimadad, Dabbaghian, & Finegood, 2012). Because our final goal is to represent all relevant an-323

cillary process, including those we ignore in this paper, and because this cannot be accomplished324

by extensions of the matrix approach, we must verify that an ABM following rules exactly iden-325

tical to those in the matrix approach generates the same (or approximately the same) results and326

inferences.327

The design of the ABM follows the same rules for ancillary processes used in the matrix ap-328

proach. The only difference is that these rules apply to single (simulated) individuals who follow329

them as agents rather than to categories or groups. Individual agents select mates, choose number330

22We assign 6 different values to ω and 3 each to ϕ and p thus producing 54 combinations of rules. For each of
these we collect 20 realizations.
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of offspring and offspring’ inherit parental genetic variants and are thereby assigned a BMI and to331

an obesity category23.332

4 Results333

4.1 Results from Leslie matrices334

4.1.1 Obesity as a monogenic phenotype under dominance335

Figure 1: Distribution of the population by BMI category and generation, in four scenarios of
assortative mating and differential fertility (Leslie matrices)

Figure 1 displays the distribution by obesity categories in four different regimes of FD and336

AM. To avoid cluttering, we only show results for two AM regimes (ω = 1 and 0) and two FD337

regimes (ϕ = 0 and 1). Under maximum fertility differential favoring the obese subpopulation338

(ϕ = 1), the steady state distributions by obesity categories in a regime with random mating (top339

left) and an endogamous one (bottom left), are virtually identical: in both cases the prevalence340

of obesity attains values around .75-.81. However, a comparison of the two assortative mating341

regimes under conditions of no fertility differentials, (ϕ = 0), reveals stark differences: when there342

23The full description of the ABM model is in Supplementary Materials.
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is random mating, the steady state distribution continues to favor the obese category (top right) and343

the prevalence of obesity attains a value of about .75. Instead, in the case of endogamous mating,344

the population in the obese category vanishes24. This occurs because the obesity allele is dominant345

and under an endogamous regime couples whose members are obese may produce offspring who346

are not, but the reverse cannot happen, e.g. when neither member of the couple is obese, they can347

only produce non-obese offspring. Thus, in every generation the obese category sheds population348

to the other categories and these losses are not offset by higher fertility (as they are in the case of349

differential fertility). The main inference we draw from these results is that when there are fertility350

differentials that favor those with higher BMI, assortative mating plays a marginal or no role at351

all.25
352

4.1.2 BMI as a polygenic phenotype353

When the distribution by obesity categories is a function of individuals’ BMI whose heritability354

depends on a PRS, the transition matrix H(t) will have random entries and change across gener-355

ations. Except in one case (no fertility differentials), there will be no steady state distributions.356

Because of this, the assessment of effects of AM, FD and PE, requires that we choose outcomes357

in one or more generations. In what follows we will choose the distributions attained in the 10th358

generation26.359

Figure 2 displays values of obesity prevalence in the 10th generation as a function of the AM360

parameter, ω , for multiple combinations of PE and FD. When the parameter for FD is greater361

than 0 (green and blue lines), prevalence levels increase linearly as one moves from a regime of362

random mating to one that is completely endogamous. Changes in AM induce the largest changes363

in prevalence. In fact, the maximum range of variation (with higher FD) is approximately .16364

24The relatively high levels of steady state prevalence of obesity in 3 of the scenarios in the figure are due to the
assumption of a single locus with a dominant allele for obesity. Had we replaced the dominance assumption for a
milder version (half of those possessing a biallelic genotype become obese and the other half do not), the levels of
steady state prevalence would have been reduced.

25A feature in Figure 1 is that the steady states in three of the scenarios are attained relatively rapidly (10 generations
or less) whereas in the fourth case it requires about 15 to 20 generations.

26Because the obesity prevalence across generations are monotonically increasing (with FD) or relatively steady
(without FD), inferences are the same irrespective of the generation we choose to focus on.
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Figure 2: Prevalence of obesity after 10 generations as a function of AM (ω), differential fertility
(ϕ), and genetic penetrance (p), Leslie matrices.

(.48− .32) or about 42 percent of the mean of the range. Second, when there are no FD (red lines),365

AM plays no role and neither does PE. Third, differences associated with increases in PE (solid366

and dashed lines) grow in absolute value as FD increase and do so irrespective of ω . Note that,367

when in a regime with no FD, obesity prevalence does not converge to 0 as it did in the simple368

Mendelian segregation case.369

In summary, the largest impact is exerted by GH and FD. AM plays no direct role, e.g. its370

additive effects are negligible and the impact of PE is indirect. This is an important finding for it371

casts doubts on the possibility that AM could have had discernible influence on the global obesity372

epidemic.373
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Figure 3: Distribution of the population by BMI category and generation, in four scenarios of
assortative mating and differential fertility (ABM)

4.2 Results from ABM374

4.2.1 Obesity as a monogenic phenotype under dominance375

Figure 3 shows the distributions by obesity category in four scenarios of AM and FD defined using376

identical rules to those in the case of Leslie matrices. As in results from matrix approach, in sce-377

narios with FD favoring the obese subpopulation, the contrasts between a regime of full random378

mating and one fully endogamous are negligible. Further, both approaches estimate obesity preva-379

lence in the range .75-.82. Similarly, and as in Figure 1, in the absence of fertility differentials a380

fully endogamous regime leads to the disappearance of the obese population.381

4.2.2 BMI as a polygenic phenotype382

Figure 4 displays estimated prevalence of obesity as a function of the parameter ω for 6 combina-383

tions of ancillary processes FD and PE. These plots are very similar to those in Figure 2 and lead to384

the same inferences. In particular, AM does not have a significant direct influence on trajectories385

of obesity prevalence but does appear to have a modest interaction effect with FD and PE (see386

below).387
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Figure 4: Prevalence of obesity after 10 generations as a function of AM (ω), differential fertility
(ϕ), and genetic penetrance (p), ABM.

4.3 Estimation of models for the effects of the ancillary processes388

A useful way to summarize the above results is by modeling outcomes of interest (prevalence of389

obesity and parameters of the distributions of BMI and PRS) as a function of the input parameters.390

Because results from both the matrix and ABM approach depend on microsimulation (with 20391

replicas, in the case of Leslie matrices and about 300 in the case of ABM), we can estimate the392

average relation between selected outcomes of interest and input parameters. In particular, we393

estimate the following models394

ln(Oi j) = αi +Σk(βik ×Zik) (11)

where ln(Oi j) is the the log of the outcome i, namely, mean BMI and standard deviations of395

BMI and PRS for the jth simulation, Zik is the value of the kth ancillary parameter (ω for AM, ϕ396

for FD and p for PE) used in the simulation i, αi is an outcome-specific constant, and βik’s are397
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effects of the input parameter k on outcome i27.398

Table 2: Coefficients of regression of three outcomes for ABM and Leslie matrices

log(prev.) log(BMI) Mean PRS

ABM LM ABM LM ABM LM

Constant -1.177*** -1.129*** 3.325*** 3.325*** .009*** .008

β (ω) .006*** .011* .001** .001 .015*** .005
β (ϕ) .225*** .152*** .037*** .024*** .978*** .635***
β (p) .068*** .064** .001 .002 .013 -.029
β (ω ×ϕ) .082*** .140*** .015*** .024*** .410*** .674***
β (ω × p) .019 .034 .002 .003 .032 .136
β (ϕ × p) .360*** .262*** .072*** .047*** .799*** .576***
β (ω ×ϕ × p) .113*** .118* .030*** .037*** .342*** .244

N 7,944 1,080 7,944 1,080 7,944 1,080
R2 .982 .963 .989 .976 .993 .988
Adj. R2 .982 .962 .989 .976 .993 .988
RSE .019 .022 .0026 .003 .046 .051
df 7,936 1,072 7,936 1,072 7,936 1,072

The N for LM models corresponds to 54 combinations of parameter values and 20 replicas for each of them. The
N for ABM models corresponds to 27 combinations of parameter values and about 300 replicas for each.

Table 2 displays estimates of parameters and measures of fit for linear models for (the logs of)399

prevalence of obesity, mean BMI, and mean PRS as of the 10th generation (results for the standard400

deviations of BMI and PRS are displayed in Suppl. Materials, Table S5).401

All estimates have the same signs, attain comparable statistical significance levels, and their402

magnitude is similar. The strongest direct effect is associated with FD: a change from a regime with403

no fertility differential to the maximum implies a relative change of obesity prevalence between 15404

and 23 percent (first two columns, second row) and of 2 to 4 percent of the mean BMI. Changes405

in PE exert a weaker (prevalence) or no effect (BMI and PRS) whereas the direct effect of AM is406

small in all cases (albeit statistically significant in the ABM simulations). As surmised by Figures407

2 to 4, there are multiple and strong interaction effects. Thus, as expected, the effects of fertility408

differentials become larger with increases in assortative mating and penetrance. For example, the409

proportional increase in prevalence associated with maximum fertility differentials grows from .23410

27Because the PRS is in standard units and can attain negative values we do not use its logarithmic value.
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(ABM) or .15 (matrix) to about .31 (ABM) or .29 (matrix) under a fully endogamous regime.411

These are large changes and suggest that non-linearities and higher order effects are likely to be an412

important part of observed time trends of BMI and obesity.413

5 Summary and discussion414

The results of the simulations lead to a handful of potentially useful inferences. First, and unlike415

empirical results from the IQ phenotype (Preston & Campbell, 1993), we find that fertility differen-416

tials by obesity categories are central to the story. Furthermore, we find that the other two ancillary417

processes, but particularly assortative mating, do not exert a significant direct influence. Instead,418

they operate as modifiers of the influence of fertility differentials and vertical genetic heritability.419

This undermines the conjecture that assortative mating on its own, even though apparently on the420

rise, could have driven past or could drive future trends of the obesity epidemic, both in popula-421

tions that are in the midst of it and in those experiencing the initial stages (see also Supplementary422

Materials for added reasons to suspect a weak role of AM)28. There is one caveat of importance423

though: the direct effect of assortative mating must be stronger in the presence vertical cultural424

heritability (eg. parental and household influences) of the phenotype.425

Second, even though we use rather low values of excess genetic penetrability (p) to reflect the426

impact of GxE interaction, its role is not insignificant. In fact, it augments the impact of fertility427

differentials and through it, reinforces the power of potential interventions designed to eliminate or428

reduce exposure of some subgroups to obesogenic environments (see Section 4 of Supplementary429

Materials). In addition, its influence could be felt in areas we did not explore. For example, a GxE430

interaction that emerges in generation G0 may have important effects on genotypic composition,431

couples’ distribution by obesity category, and genetic heritability of the phenotype, that will be432

subsequently expressed in G1. Finally, we ignored the implications of a GxE interaction that433

28Hedrick’s formal representation shows that AM can contributes little to aggregate genetic variance via LD. Our
simulation suggest that its total contribution via increased homozygosity is minor and a relatively relatively minor
player in the growth of global obesity.
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emerges in a social context with strong vertical and horizontal cultural heritability.434

Third, we confirmed that, at least within the bounds of the ancillary processes considered,435

inferences from a matrix and ABM approach are quite similar. This is an important result for the436

matrix approach rests on massive simplifications that the ABM approach avoids. The fact that they437

can be used interchangeably is strong evidence supporting the use of the ABM model to include438

ancillary process that a matrix approaches cannot represent.439

Fourth, the manner in which we represent vertical genetic heritability is consequential. The440

differences in results between the simple Mendelian mechanism and the one embedded in the use441

of a PRS are an indication of this. The assumption of a single dominant allele and Mendelian442

segregation rules leads to a scenario (no differential fertility) in which the obese population disap-443

pears. Using the PRS leads to a stationary scenario in which the levels of obesity remain close to444

those that existed in G0. Substituting a monogenic scenario by a polygenic one will generate more445

complex relations between the number of gene variants involved, their direct effects, and the steady446

states. It also introduces complications in the computation of probabilities of genotypes and re-447

quires information on the net effect of each of the alleles. Both these difficulties are circumvented448

by using a PRS.449

The paper has a number of shortcomings. First, it excludes ancillary processes of importance.450

These may not only have important direct impacts but, more importantly, could modify the impact451

of the other ancillary processes. Future versions of the model will include vertical cultural heri-452

tability, specially parental influences through households ”niches”, horizontal heritability, such as453

peer’s and residential influences and, finally, maternal effects in utero and during the first few years454

of life, both known to influence adult obesity risks.455

Second, the model only represents situations in which the relation between fertility and obe-456

sity is positive, e.g the observed pattern in populations that are in advanced stages of the obesity457

epidemic. A more realistic model should include both regimes simultaneously, one in which the458

initial stages are characterized by an inverse relation that is reversed once the population attains459

certain levels of obesity prevalence. This may turn out to be a powerful feedback mechanism that460
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only an ABM model can handle efficiently.461

Lastly, one could ask if our model fits observed data well. The only avenue to address this is462

to compare some of the outcomes we compute (aggregate obesity prevalence, mean BMI) with the463

observed population totals. A number of strategies could be used to accomplish this, including464

simple numerical methods, standard Maximum Likelihood methods, or Approximate Bayesian465

Computation. However, the results of the exercise will be inconclusive as the omission of ancillary466

processes will operate as an omitted variable does in standard econometric models and contaminate467

estimates of ancillary processes that were included. To validate the model thoroughly, we must be468

able to simulate richer observed outcomes, including age-specific prevalence by gender, spatial469

distribution of the phenotype, and patterns of diffusion over time.470

Despite these limitations,there is value in our contribution. In particular, because we relied471

on empirically derived, not guessed, input parameters and because there are no better ways to472

represent the four ancillary processes included in the model, the goal of producing an informed473

and empirically defensible assessment of the influence of ancillary process and their interrelations,474

has been met.475
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Supplemental Material

The code to reproduce the analyses performed in the paper is available in the repository https:

//github.com/palloni/obesity-leslie-abm.

1 Description of Leslie Matrices

1.1 Matrix of assortative mating

The general form of the 16x4 mating matrix N is the following:

N =



p11 · · · p14 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 p21 · · · p24 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 p31 · · · p34 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 p41 · · · p44


(S1)

where pi j is the probability for an individual of obesity category i to mate with another from

obesity category j, as defined in equations (5) and (6) of the main text.

1.2 Matrix of fertility

The fertility matrix R is 16x16 diagonal. Its entries are the fertility rates (children per woman) for

the 16 classes of couples:

R =



f11 0 · · · 0

0 f12 · · · 0

· · · · · · · · · · · ·

0 0 · · · f44


(S2)

where fi j is the mean number of children produced by a couple in which one individual is in

obesity category i and the other in j. The values of fi j are defined in equation (7) of the main text.
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1.3 Heritability matrix

The heritability matrix, H(t) is of size 16x4. Its entries are the obesity categories-specific proba-

bilities of generating offspring in each obesity category:

H(t) =



h111 h121 · · · h441

h112 h122 · · · h442

h113 h123 · · · h443

h114 h124 · · · h444


(S3)

where hi jk is the probability that a child of couple whose members are in the obesity categories

i and j, belongs to the obesity category k. The entires hi jk are computed either using Mendelian

segregation rules or from PRS and the BMI-PRS relationship as defined in section 3.1.3 of the

main text.

When we use Mendelian segregation rules we can only determine two different phenotypes,

obese and non-obese. We then classify the non-obese into three non-obese BMI categories (k ≤ 3)

using information on parental obesity. If a non-obese offpsring has parents in obesity categories i

and j we define the probabilities of belonging to obesity categories k ≤ 3 as follows.

Let q1 be the conditional probability of a non-obese offspring to a (i, j) couple be in category

k = 1. We define this as

p(k = 1|non−obesei, j) = q1 = 0.1−0.015 · (i+ j−2) (S4)

Define q2 as

q2 = 0.125 · (i+ j−1) (S5)

and then

p(k = 2|non−obesei, j) = (1−q1) · (1−q2) (S6)
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with

p(k = 3|non−obesei, j) = (1−q1) ·q2 (S7)

2 The ABM model

Let t = 0,1, ... be an index for generation number, BMIi,t the Body Mass Index of agent i in

generation t and PRSi,t the BMI’s Polygenic Risk Score of agent i in generation t. We start with a

population of No agents at time t.

2.1 Generation-specific PRS

For agents in the initial generation, (t = 0), the value of the Polygenic Risk Score, PRSit is defined

by a random normal variate with mean 1 and standard deviation 0, ε(i;0,0.7). For an offspring i

in subsequent generations, t > 1, the PRS is calculated as:

PRSo f f =
PRSpar1 +PRSpar2

2
+η(µ = 0,σ = 0.7) (S8)

where PRS f
i,t−1 and PRSm

i,t−1 are the PRS’s of the generation (t-1) father’s and mother’s PRS,

respectively.

2.2 Baseline BMI

The BMI for an i who is an offspring in generation t is given by

BMI = 27.796+1.071×PRS+ ε(µ = 0,σ = 4.55) (S9)
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2.3 Fertility Differentials

As in the case of the matrix approach, we assume that the number of a couple’s offspring in

generation t is a function of the combination of parental obesity categories in generation t −1:

fi j,t = 2+(i+ j−6) · ϕ

2
(S10)

where ϕ ∈ [0,1] is the parameter for the size of fertility differentials. The number of children

for each class of couples when ϕ = 1 are displayed in Table S129.

Table S1: Mean number of children by couple as a function of parents’ BMI category

BMI group (i)
(parent 1)

BMI group ( j)
(parent 2)

Number
of children

1 1 0
1 2 0.5
1 3 1
1 4 1.5
2 1 0.5
2 2 1
2 3 1.5
2 4 2
3 1 1
3 2 1.5
3 3 2
3 4 2.5
4 1 1.5
4 2 2
4 3 2.5
4 4 3

2.4 Assortative Mating

The way to determine the number of random pairs and, consequently, the number of endogamous

pairs is calculated as follows:

29This table is useful to compute relation between the values of the input parameter ϕ and empirically observed
quantities. See Section 3.2 of this Supplement
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Couprand = (1−ω)× Nt

2
(S11)

where Couprand are the number of random couples created, Nt is the total sample and ω mea-

sures the intensity of assortative mating. For instance, when ω = 0, the number of random couples

created will be half the sample, so the entire sample will be randomly mated. On the other hand,

when ω = 1 the value of Couprand will equal to 0 and every couple will be formed endogamously,

by individuals from the same obesity category.

3 Empirical justification of parameters

The value of the input parameters we used throughout are not educated guesses but correspond

closely with empirical observation.

3.1 Assortative mating

The values of the input parameter ω partially reflects empirical values based on information from

two sources. The first was the creation of artificial data set containing the distribution of BMI for

10,000 females. Their BMI was a normal variate with mean 27 and a standard deviation of 3. We

then computed the BMI distribution of their ’partners’ using predicted values from a regression

with slopes, β , that varied between .10 to .70, normally distributed errors, ε with 0 and standard

deviations ranging from 1 to 5. In all, we computed 35 different partners’ BMI distributions. The

R2 values of the predictive regressions ranged from .004 to .81. In each case, we computed two

additional quantities: (i) the χ2 value of a cross-tabulation of females and their partners using the

four obesity categories we have employed throughout and (b) the odds ratios, ORi j of females in

the ith category of having partners in the j category.

With the artificial values of pii and πi available from each of the 35 pairs of BMI distributions,

we computed the value of ω using the expression

5



ω = (pii −πi)/(1−πi) (S12)

We then estimate three regression models to sequentially express ω as a function of β , R2 and

χ2.

The final step consists of searching the recent literature and identifying estimates of either beta,

R2, χ2, or combinations thereof. Estimates of ω’s consistent with a study’s parameter(s) are then

calculated using one of the three regression models defined before.

Column 5 of S2 displays estimates of ω obtained from each of the studies identified in the

first column using the parameter estimate in column 4. The range spanned by omega estimates

is [.06-0.25] or the first 25 percent of the range of omega used in simulation. Thus, our inference

regarding the modest direct role of AM shaping additive vertical genetic heredity (via increased LD

or homozygosity) and, more generally, the global obesity epidemic, is probably an overstatement.

3.2 Differential fertility

To establish an empirically plausible range for the differential fertility parameter ω we relied on

the observed relation between maternal obesity and number of children ever born (controlling

for maternal age). We used information for multiple sources: 33 African Demographic Health

Surveys, the US National Longitudinal Survey of Youth (NLSY) as well as the National Health

and Nutrition Examination Survey (NHANES). The populations included in our surveys represent

a very broad range of countries at different stages of the obesity epidemic, from those in which

it is not yet discernible to those that have attained relatively high values (though not the highest).

Admittedly, this is not an ideal data set because in all cases it lacks information on the father or

partner. But, alas, there are no national data that include anthropometry of both members of a

couple couple. To approximate the values of the parameter ϕ we first estimated regressions of the

number of children ever born using a dummy variable for obesity and controls (age and education

levels).
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Table S2: Observed within-couple correlations of BMI/weight and omega

Study Population Type of measure Parameter
estimate Omega

Ajslev et al.
(2012)

37,792 pairs
(Copenhangen)

BMI distributions - 0 -.012

Allison et al.
(1996)

Multiple studies
Couples’ correla-
tion weight

0.10-0.33
0.062-
0.206

Hebebrand et al.
(2000)

128-150 couples
German National
Nutritional Survey

BMI distributions - 0.16-0.20

Katzmarzyck et
al. (2002)

1341 parents Cana-
dian Fitness Survey
(1981)

BMI rank correla-
tion

0.14 0.087

Sjaarda & Kuta-
lik (2022)

51664 couples UK
Biobank

Weight correlation 0.25 0.155

Speakman et al.
(2007)

42 couples North-
east Scotland

BMI 0.33 0.206

Authors’ esti-
mate from HRS

1,568 couples in
2006 wave

BMI distributions - 0.06

Authors’ esti-
mate from HRS

All couples - all
waves (up to 2020)

BMI distributions - 0.11

Authors’ esti-
mate from DHS
India 2019-20

38,857 couples BMI distributions - 0.12

Estimates from Allison et al (1996) correspond to correlation of partners’ weight (not BMI). The range of val-
ues (0.10-0.33) includes Allison’s et al. own and those and those from 29 different studies in sub-populations
from USA, UK, Italy, Sweden, Norway, Denmark, Brazil, Peru, Israel (see Table 1 in Allison et al. (1996)).
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The estimated effect of the dummy variable, β and ϕ are related by the following expressions:

βmax = ϕ ×3 (S13)

βmin = ϕ × .5 (S14)

where βmin and βmax are the minimum and maximum values consistent with a value of ϕ .

Table S3: Estimates of Relations between Children Ever Born and Maternal Obesity

Country Source Population β estimate Adult Female Prevalence

India DHS
All -0.381 0.07

Low Ed -0.181
High Ed 0.05

Turkey DHS
All 0.604 0.41

Low Ed 0.054
High Ed 0.496

Africa1 DHS
All -0.792 0.017-0.150

Low Ed -0.371
High Ed 0.206

Asia1 DHS
All -0.157 0.010-0.044

Low Ed -0.237
High Ed 0.168

USA
NLSY 1997 All 0.246 0.37
NHANES All 0.323 0.37

1. Africa includes 33 DHS samples and Asia 8 DHS samples.
2. All regression coefficients are significant at p < 0.001.
3. Source of obesity prevalence estimates: https://ncdrisc.org/obesity-prevalence-ranking.html

Table S3 displays values of β from sample surveys of some populations and subpopulations.

The figures in this table confirm that the value of ϕ in the middle of the range we are using is

consistent with minimum and maximum β values of .25 and 1.5 respectively. Because the range

of β values is approximately [.20,.50], they are consistent with ϕ in the range [.067, 1].30.

An important feature of the table is the association between the magnitude of β ’s and the

30The maximum and minimum values were computed using Table S1
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population prevalence of obesity (last column). In particular, there is a strong positive relation

(close to that observed in the US) among females with highest education in countries with the

lowest prevalence of obesity (Africa, India). This is consistent with the idea that as the obesity

epidemic advances, there is a transition from a negative relation between obesity and fertility to a

positive one.

3.3 Penetrance and GxE effects

The parameter p is defined as the excess penetrance (relative to a baseline) and we have employed

it to reflect possible GxE interactions. The values we employ, [0-.20], are lower than those that

have been observed in several high income countries. In the US for example, empirical estimates

of p are in the range of .06 to 1.10 (Huangfu, Palloni, Beltrán-Sánchez, & McEniry, 2023). In

particular, data from HRS suggests a p value of the order of .40, twice as large as the maximum

we use as input. From this we may conclude that our simulation probably underplay the impact

that GxE interactions may have on the population distribution by obesity categories.

4 Additional results

Two additional results of the simulations are described below

1. Heritability To what an extent does the genetic heritability of the phenotype (BMI) changes

across generations and how are those changes related to alternative regimes of AM, FD and

PE? To investigate this issue we compute standard heritability ratios as

H2 = [α × (1+ p)]2 × (V (PRS)/V (BMI)) (S15)

where V (PRS) and V(BMI) are the variance of the PRS and BMI.

Figure S1 displays the values of h2 evaluated at the 10th generation for combinations of AM,

FD and PE regimes. Its value ranges between .10 and .15. As expected, h2 increases with the
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strength of assortative mating. These increases appear to be similar for all combinations of

PE and FD. Also as expected, the largest values are found for the highest levels of PE. The

impact of FD is smaller but also in the expected direction, namely, as fertility differentials

contract, h2, increases slightly. Lastly, just as in the case of obesity prevalence and mean

BMI, there is an interaction effect between fertility differentials and assortative mating.

Figure S1: Heritability of BMI in the 10th generation as a function of AM (ω), differential
fertility (ϕ), and genetic penetrance (p), Leslie matrices.

2. Effects of interventions: Suppose we are interested in evaluating the cost-efficiency of an

intervention to reduce the prevalence of obesity. For example, we know that obesogenic

environments may spike the penetrance of genetic variants associated with higher BMI or

increased risks of obesity. One could design interventions that reduce or eliminate exposures

to those environments, e.g. the equivalent of lowering the magnitude of the parameter α ,

that is, reducing p to bring α closer to the baseline value of genetic penetrance. Table

S4 shows the effect of an intervention on prevalence of obesity on the 10th generation,.

The intervention consists of reducing reducing exposure to obesogenic environments that

translates into a reduction of p from 0.2 to 0 in the sixth and following generations. The

table displays relative reductions under different combination of initial AM and FD regimes.
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Obviously, in all combinations of regimes there are reductions as they range between 1

percent to 8 percent. The most salient ones take place under pre-intervention regimes of

high assortative mating and fertility differentials.

Table S4: Prevalence of obesity from Leslie matrices with and without an intervention, as a
function of ω & ϕ

ω = 0 ω = 0.4 ω = 1

ϕ = 0
With intervention .323 .322 .323
without intervention .326 .326 .328

Change −1% −1% −2%

ϕ = 0.5
With intervention .353 .366 .385
without intervention .365 .382 .411

Change −3% −4% −6%

ϕ = 1
With intervention .382 .405 .438
without intervention .400 .429 .476

Change −4% −6% −8%
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5 Tables and Figures

Figure S2: Mean BMI after 10 generations as a function of AM (ω), differential fertility (ϕ), and
genetic penetrance (p), Leslie matrices.
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Figure S3: Standard deviation of BMI after 10 generations as a function of AM (ω), differential
fertility (ϕ), and genetic penetrance (p), Leslie matrices.

Figure S4: Mean PRS after 10 generations as a function of AM (ω), differential fertility (ϕ), and
genetic penetrance (p), Leslie matrices.
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Figure S5: Standard deviation of PRS after 10 generations as a function of AM (ω), differential
fertility (ϕ), and genetic penetrance (p), Leslie matrices.

Table S5: Coefficients of regression of log(σ(BMI)) and log(σ(PRS)) for ABM and Leslie
matrices

log(σ(BMI)) log(σ(PRS))
ABM LM ABM LM

Const. 1.570*** 1.567*** 0.361*** 0.342***

β (ω) 0.004*** 0.007** 0.031*** 0.054***
β (ϕ) 0.001 -0.001 -0.009*** -0.001
β (p) 0.114*** 0.113*** 0.034 0.012
β (ω ×ϕ) -0.004*** -0.003 -0.018*** -0.029***
β (ω × p) 0.014*** 0.010 0.065 0.075***
β (ϕ × p) -0.006 0.002 -0.032*** -0.013
β (ω ×ϕ × p) -0.005 -0.017 -0.039*** -0.065*

N 7,944 1,080 7,944 1,080
R2 0.628 0.504 0.793 0.705
Adj. R2 0.628 0.500 0.793 0.703
RSE 0.007 0.010 0.008 0.012
df 7,936 1,072 7,936 1,072

The N for LM models corresponds to 54 combinations of parameter values and 20 replicas for each of
them. The N for ABM models corresponds to 27 combinations of parameter values and 300 replicas for
each.
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Figure S6: Mean PRS by BMI category after 10 generations as a function of AM (ω), differential
fertility (ϕ), and genetic penetrance (p), Leslie matrices.
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