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Abstract

Cause of death data provides additional insight on the future trends of mortality, as well
as provide valuable information for governments and insurance companies. Models that fit and
forecast by cause of death come across several methodological problems, one of them being the
inconsistency between individual estimation and forecast of mortality per cause of death and
an all-cause scenario. We propose a clear-cut and fast method to obtain coherent cause-specific
mortality trajectories based on Lagrange multipliers. We apply the method proposed to fit and
forecast mortality of males in USA for the most five leading causes of death.
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1 Introduction

Overall mortality trends are the summation of cause-specific mortality experiences. Consequently
modelling and forecasting changes in cause of death patterns allows us to recognize the drivers
of all-cause mortality and identify emerging health challenges. On the one hand, early literature
has argued that all-cause mortality projections based on cause-specific mortality present serious
drawbacks ( , ). On the other, some approaches for forecasting cause-specific mortality
has been recently proposed, though either based on the Lee-Carter model and for specific cause
( ) ) or on a Bayesian hierarchical model aiming to forecast cause-specific death
rates for geographic subunits ( ) ).

When dealing with cause-specific mortality, we need to ensure that cause-specific deaths must
sum to the total number of deaths. In the following, we model log-mortality in a Poisson setting for
each cause assuming only smoothness over age and time. The summation constraint thus become
non linear with respect to the estimated coeflicients. We embed the whole approach in a Generalized
Linear Array Model framework (GLAM, ) ) in which Lagrangian multipliers are
iteratively updated to enforce constraints.

2 The model

We have deaths, and exposures to the risk of death, arranged in two three-dimensional arrays,
Y = (yijr) and E = (e;ji), each m x n x k, whose rows, columns and layers are classified by age
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at death (a), year of death (t) and cause of death (¢). For ensuring coherence in the model, the
final layer of Y contains total number of deaths (that is, K =number of causes of death+1). Note
that each layer in E includes the same age-year matrix: we are in a competing risk setting. We
assume that the number of deaths y;;; is Poisson distributed with mean ji;;,€;5%. The value of i,
commonly named force of mortality, is the object of all mortality models.

In the following we will illustrate the method for United States, males by age-groups 30-34, ...,
95-99, 100+, years 1978-2018 and the following five coherent groups of causes of deaths: Cardio-
vascular diseases, Neoplasms, External causes, Diseases of the respiratory system and Other diseases
(Human Cause-of-Death Database, 2023). We forecast total and cause-specific mortality up to 2040.

With k& — 1 causes of death, we deal with a three-dimensional setting. The vectorized linear
predictor is given by n = Ba where the design matrix is B = I, ® By ® B,. We use a rich basis of
B-splines for age and year, and smooth surfaces are then obtained by marginal penalization. With
no summation constraint the model simply reduces to a series of two-dimensional GLAM:s.

To hinder singularity issues in the resulting scoring algorithm, we enforce our constraint for a
large number of equally-spaced data-points. Smoothness will guarantee the remaining coherence
between cause-specific and overall mortality. The penalized 3D GLAM is then subject to

Cexp(n) = 0 (1)

where C' sums up, for the large selected number of age and years, cause-specific deaths and then
subtract the associated total number of deaths. The matrix C can be written as a Kronecker
product C = C,. ® C; ® C, and therefore, as for the linear functions and the inner products within
the scoring algorithm, it can be included as a sequence of nested matrix operations in a GLAM
framework.

The use of Lagrange multipliers w for each age-year ensures that the constraint is enforced,
yielding the following constrained penalized Poisson log-likelihood:

1
¢{p =1y'Ba — € exp(Ba) — ia'Pa — W' CE exp(Ba). (2)

We compute the derivatives of (2), and by means of Newton-Raphson we find the following scoring
algorithm:
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where v = expn, V = diag(y). W and z are the Poisson regression weights and working response,
respectively. The penalty P ensures smoothness over age and time for each cause and it has a
block-diagonal structure.

In order to handle k — 1 causes of death across different age groups and years, we face the
challenge of optimizing 2 - £ smoothing parameters. To avoid dealing with such a high-dimensional
optimization problem, we decided to utilize the smoothing parameters optimized by BIC when
estimating each cause-specific age-time matrix independently.

Confidence intervals for the estimated mortality surface are calculated by stepping into the
Bayesian framework, therefore:

Var(B&) = BRB',

where R is the top left block of the inverse of the matrix on the left hand side of (3). Of course, if
there are no constraints, i.e w = 0, we obtain the usual expression of the variance.

As in ( ) we treat forecasting as a missing value problem and we add shape
constraints to enforce future cause-specific mortality patterns to lie within a range of valid profiles
computed from observed trends ( , ).
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3 Results

We fitted the proposed model to the US male mortality data described in the previous section. The
left panel of Figure 1 shows actual, estimated and forecast log-mortality for a selected age (50)
over years along with their 95% confidence intervals. The proposed model is able to well described
historical cause-specific patterns as well as to reasonably extrapolate them into the future. The
right panel of Figure 1 presents estimated death counts for a specific year (2000). Here one can
easily acknowledge the equality between the sum of cause-specific deaths and the total number of
deaths which is enforced by the non linear set of constraints in (1). Equally satisfactory outcomes
are achieved for all ages, years and causes of deaths.

Year 2000
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Figure 1: Left panel: observed, estimated and forecast cause-specific mortality rates over years for
age 50 (log-scale) along with associated 95% confidence intervals. Right panel: Estimated cause-
specific death counts over age-groups for year 2000. In both panels, total mortality and total number
of deaths are plotted. USA, males, ages 30-100, years 1978-2018, forecast up to 2040.

In Figure 2, a commonly used summary indicator is presented: life expectancy, here at the
starting age of 30. We compare our model with a estimates obtained on overall mortality us-
ing P-splines with shape constraints (Camarda, 2019). While the fitted values for the observed
time-window are practically identical, noticeable differences emerge when making forecasts. When
accounting for cause-specific patterns and ensuring that cause-specific deaths add up to the total
number of deaths, the modeling of mortality yields slightly more pessimistic prospects: remaining
life expectancy in 2040 at age 30 is forecast to 50.67 years in our model compared to 51.16 years in
the alternative approach.

Of even greater significance is the notable reduction in the confidence intervals, indicating a
significant decrease in future uncertainty around overall mortality when cause-specific trends are
incorporated into the model. This outcome was expected, given the inclusion of substantial infor-
mation through the incorporation of what we referred to as the summation constraint.

4 Conclusions

In the presented study, we propose a novel approach to model and forecast cause-specific mortal-
ity. By combining penalized likelihood and iteratively computed Lagrangian multipliers we obtain
smooth cause-specific mortality surfaces over ages and time, and we simultaneously enforce the
necessary constraints in this setting: cause-specific deaths sum to the total number of deaths. Fore-
casting comes naturally in this setting and constraints are satisfied into future years, too. Additional
shape are necessary to demographically informed projected patterns.

In the example analysis of US mortality, focusing on the five leading causes of death, the proposed
model yields lower overall future life expectancy compared to similar models. Additionally, it
exhibits remarkably narrower future uncertainty.
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Figure 2: Observed, estimated and forecast life expectancy at age 30 along with associated 95%
confidence intervals. Proposed model estimating cause-specific and overall patterns with summation
and shape constraints is compared with a simpler approach without summation constraint. USA,
males, ages 30-100, years 1978-2018, forecast up to 2040.

Moving forward, we intend to investigate other scenarios where coherence constraints may be
required, such as mortality by region, sex, and other factors. Furthermore, we have plans for a
comprehensive validation study to evaluate the accuracy of future point estimates and the coverage
of associated confidence intervals.

Last, Covid-19 pandemic clearly taught us that forecast future mortality by extrapolating past
trends can no longer be tacitly assumed. Accounting for the impact of such short-term shocks will
be a clear challenge for further mortality forecasting research as well as for our model.
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