
On the Dynamics of the Demographic Dividend

A Formal Analysis of the Timing and Magnitude

Thomas Fent Joshua R. Goldstein Gustav Feichtinger

October 25, 2023

Paper prepared for the European Population Conference 2024

Abstract

When fertility declines, there is a transitory period of low dependency.
This occurs when the largest cohorts born during the transition are of prime
working ages and there are at once few children and few Elderly. The benefits
arising from such an advantageous age structure are subsumed in the concept
of the first demographic dividend.

The goal of this paper is to provide a formal framework for understand-
ing the timing, duration, and magnitude of the gain from the “demographic
window of opportunity” that accompanies the decline in fertility. We show
that classical stable population theory is not able to quantify the magni-
tude of the effect arising from an advantageous age structure. Nevertheless,
Coale’s model of constantly declining fertility is capable to quantify age
structure effects that are comparable in magnitude and duration to those of
real populations.

From empirical research we know that both changes in and the level of
the support ratio have an influence on economic growth (Kotschy et al.,
2020). We focus on the level because it is the current level that determines
the advantage in terms of output per capita. Moreover, this approach allows
for a coherent quantification of the gain accumulated over the favourable
period and an intuitive economic interpretation. Our formal demographic
model explains how, when, how long and to what extent the fertility decline
generates benefits in terms of labour supply. In addition, our approach allows
for an accurate sensitivity analysis and projections of these benefits.
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1 Introduction

One hopeful aspect of demographic change is the so-called “demographic window
of opportunity” a transitory period of favourable age structure that occurs as
fertility declines. After fertility has begun to decline, there is a period when there
are still many workers, but few children and few elderly. As a result, per-capita
income increases, both consumption and savings can increase, investments can
be made in future generations, and institutions can be built to prepare a society
and economy for the population aging that follows this transitory “boom.” The
demographic dividend is given some of the credit for Japan’s go-go years of the
1980s and more recently for the economic rise of Korea and China. As Bloom and
others emphasize, the demographic dividend is something to take advantage of
when it occurs and as long as it lasts.

Our goal in this paper is to provide a formal analysis of the demographic div-
idend in terms of timing, duration, and magnitude. We begin with a review of
stable population theory and what it tells us about the relationship between pop-
ulation growth, age-structure, and dependency. We will see that there is a growth
rate r that minimizes dependency. The stable case, however, cannot describe the
transient dynamics that we see in real populations, because the stability of fertil-
ity constrains the relationships between age groups, and does not allow a “bulge”
in the working ages. We therefore turn next to a dynamic model of demographic
change, first introduced by Coale (1972, ch. 4), in which fertility is forever declin-
ing. This model is implausible for the very distant past and very distant future
but provides a useful model of what happens soon before and soon after fertility
falls below replacement levels. We will see that the same framework used for un-
derstanding the minimization of dependency in stationary populations can also be
used for so-called “pseudo-stable” populations described by Coale’s model.

Many of the results we present here are based on findings in the book–length
detailed analysis of Coale’s model by Feichtinger and Vogelsang (1978). Our con-
tribution here is to apply them to the problem of the demographic dividend.

2 A motivating example

The rapid fertility decline in China has created a temporary situation where the
fraction of the population that is of working age is unusually high. Here we show
UN estimates and forecasts of the support ratio in China from 1950 to 2100 and
compare them with estimates from stable and pseudo-stable theory.

The first panel in the Figure 1 shows the support ratio for China as estimated
and projected by the United Nations Population Division. We see that the support
ratio decreased in the 1950s as improvements in child survival meant a larger share
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Figure 1: Support ratios in China estimated and projected by the United Nations
compared to the possible range of support ratios in stable populations and the
fitted pseudo-stable model. Panel A shows the support ratio estimated and pro-
jected by the United Nations, with the grey lines indicating the maximum level
and timing of the maximum. Panel B shows the variation of the support ratio in
a stable population across a broad range of growth rates using the Swedish period
life table of 2000 as a model survival schedule. Panel C shows the observed (and
projected) support ratio of China, with the time axis defined relative to the time
when the period fertility rate reached replacemend t0. The figure also shows the
support ratio of the stable populations that would be obtained from the contem-
porary growth rates and the support ratio of the pseudo-stable population with
fertility declining at a constant rate equal to that observed in China from t0 − 30
to t0 (2.4 percent). The stable population model is incapable of producing the ob-
served variation in the support ratio, whereas the pseudo-stable population model
provides a reasonable description in terms of both magnitude and timing.
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of children in the population. Beginning in about 1970, as fertility began to fall, the
support ratio began improving, reaching a maximum of 2/3, or 1 dependent for every
2 workers in about 2015. After 2015, the support ratio is projected to decrease, as
a result both of the ageing of the largest cohorts, and longevity improvements that
increase the number of surviving elderly. By about 2060 or so, the sharp decrease
in the support ratio is expect to come to an end and settle at levels similar to
those observed before the onset of fertility decline.

The 2nd panel shows the variation in support ratios predicted from stable
population theory. When populations are growing very quickly, the age pyramid
will have so many children that the support ratio will be low. On the other hand,
populations that grow very slowly, will have a large number of elderly. As the
figure shows, in–between population growth rates, in this case, one just slightly
negative, will maximise the long–term support ratio. The x–axes in panels 1 and 2
represent different kinds of variation, the observed support ratio is plotted against
time, but the stable support ratio is plotted against the long–term growth rate.
However, the y–axes are comparable, and show us that the highest support ratio
in stable populations (about 0.6 in this case) is not nearly as high as observed in
the real world case of China (about 2/3).

The 3rd panel shows the support ratio implied by the pseudo–stable model of
constantly declining fertility. The x–axis in this case is relative to the year in which
fertility reaches replacement. The pseudo–stable model (which we will describe in
detail further below) is able to account for several of the features of the real–world
decline. It increases roughly in unison with the observed populations from the time
when births peak to close to the maximum. The maximum support ratio in the
pseudo–stable case (2/3) is now quite close to the maximum observed in China. The
main difference is that the pseudo–stable case increases for somewhat longer than
the projection by the UN. This is largely because the model includes only fertility
change, and does not incorporate the increases in longevity – and accompanying
increases in the non–working elderly – that are forecast to occur.

China is an example of very rapid fertility decline. It took only 2 decades for
fertility to fall from an NRR of 2.0 to replacement levels. There are other countries
– for example Indonesia – where the decline is expected to take more than twice
as long. Our goal for the rest of this paper is to use a generalisable mathematical
framework that will apply to all countries, and help explain what determines the
timing, duration and magnitude of the demographic transition.

This specific example motivates us to use the pseudo–stable model to try to
answer questions about the general features of the demographic window of oppor-
tunity and its dependence on the speed of fertility decline.

Namely,

1. When does the demographic dividend begin? Does it happen before or after
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fertility declines to replacement?

2. How long does the dividend last? Does faster fertility decline lead to a briefer
period of advantageous age structure?

3. How does the speed of fertility decline influence the height of the peak of the
dividend, when age structure is at its most advantageous?

4. How can we measure the total size of the dividend, summing the benefits
from each year? How does this magnitude vary with the speed of fertility
decline?

3 The model

For a mathematical investigation of the dynamics of the support ratio during a
decline in fertility we revisit a model proposed by Coale (1972, chap. 4). The basic
assumption of this model is a population where fertility is fixed in age structure
but declines at a constant rate k < 0. The mortality schedule is fixed and the
survival function l(a) denotes the probability of surviving to age a.

Coale (1972) derives from the mean value theorem of integral calculus that for
any t there exists a µ(t) within the boundaries of reproductive age such that the
number of births at time t is equal to the number of births µ(t) years ago (i.e. one
generation before) times the net reproduction rate at time t,

B(t) = B(t− µ(t))NRR(t).

This µ(t) is close to the mean age at childbearing. For mathematical convenience,
we approximate µ(t) by a constant value µ —which we call henceforth generation
length.

Although the aforementioned assumptions seem to be rather restrictive, there
are indeed countries that exhibit a decline in the net reproduction rate that co-
incides with an exponential decline pretty well. Figure 2 illustrates the process
of fertility decline for Brazil, China, Colombia, Costa Rica, Cuba, Pakistan and
Republic of Korea from 1950 to 2021. The graphs show the actual data (dots)
and the exponential decline according to our model (solid line). The time series of
Brazil, Colombia and Costa Rica fit exceptionally well for a time period of more
than half a century.

The respective rates of fertility decline, k, and the start and end of the fertility
decline which we approximate by an exponential decline with rate k are listed in
table 1. (If the end is 2021 this actually means that fertility decline is still going
on this country but we used this last available data point to calculate k.)
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Figure 2: Decline of net reproduction rate in Brazil, China, Colombia, Costa Rica,
Cuba, Pakistan and Korea from 1950 to 2021. Dots represent empirical data, solid
lines illustrate exponential decline. Data source: United Nations, Department of
Economic and Social Affairs, Population Division (2022).
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country k start end
Brazil -0.018 1961 2021
China -0.029 1963 2021
Colombia -0.020 1961 2021
Costa Rica -0.022 1960 2021
Cuba -0.026 1964 2006
Pakistan -0.014 1984 2021
Republic of Korea -0.027 1959 2021

Table 1: Rates of fertility decline.

Regarding the assumption to keep generation length µ(t) constant at µ we
have a look at the change of the mean age at childbearing in the same sample
of countries over the same period of time (figure 3). The graphs show that in
Costa Rica, Cuba and Pakistan the mean age at childbearing changed very little
during the time interval from 1950 to 2021. Thus, Costa Rica is the only country
in this example that fulfils both assumption, an exponential decline of the net
reproduction rate and an almost constant generation length.

To analyze the model, we normalize the time scale such that t = 0 when the net
reproduction rate NRR = 1. In this formal model, fertility approaches infinity for
t → −∞ and zero for t → ∞. Although these extreme values are unrealistic, the
model is appropriate for describing the development of the age structure during
the transition phase from high to low levels of fertility. For the limiting case k = 0,
we assume that the NRR is constantly equal to 1. This special case actually
represents a stationary population but it is relevant for our analysis as it marks
the boundaries for the dynamics in the case of a slow fertility decline.

To investigate the age structure, we denote N(a, t) the number of females aged
a at time t, which is equal to the number of births at time t− a times the survival
probability l(a), thus N(a, t) = B(t − a)l(a). Then, the number of births at time
t becomes (Coale, 1972, equ. (4.8))

B(t) = B(0) exp

(
k

2
t+

k

2µ
t2
)
.

This results in the number of births at time t− a as

B(t− a) = B(t)g(a, t)

with (see Coale (1972, p. 120) and Feichtinger and Vogelsang (1978, p. 22))

g(a, t) =
B(t− a)

B(t)
= exp

(
−k

2
a+

k

2µ
a2 − kt

µ
a

)
. (1)
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Figure 3: Mean age at childbearing in Brazil, China, Colombia, Costa Rica, Cuba,
Pakistan and Korea. Data source: United Nations, Department of Economic and
Social Affairs, Population Division (2022).
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The derivation is given in appendix A.
With this we express the birth rate according to Coale (1972, equ. (4.38)) and

Feichtinger and Vogelsang (1978, equ. (6.4)) as

b(t) =
1∫ ω

0
g(a, t)l(a)da

, (2)

where ω denotes the maximum age of the life table. The support ratio is defined
as the share of the working age population in the total population, i.e

S(t) =

∫
W
N(a, t)da∫ ω

0
N(a, t)da

=

∫
W
g(a, t)l(a)da∫ ω

0
g(a, t)l(a)da

, (3)

with W denoting the age interval of the working age population.
From empirical research we know that both, changes in the support ratio and

the level of the support ratio have a significant influence on economic growth
(Kotschy et al., 2020). Therefore, we investigate the time interval during which
the support ratio S(t) increases, and the time interval during which the support
ratio exceeds a certain threshold. For this threshold we choose the support ratio
of a stationary population S0 with the same mortality schedule l(a), which we
express as

S0 =

∫
W
l(a)da∫ ω

0
l(a)da

. (4)

We choose this level as a benchmark as it is a neutral level that can be sustained
with a constant age structure and consider a support ratio above S0 advantageous.
For a decrease in fertility, i.e. k < 0, the support ratio initially increases and
then decreases. Therefore, we look for those points in time t1 and t2 when the
support ratio of the pseudo–stable population S(t) equals the support ratio of the
stationary population S0. During the time interval in between these two points in
time, the support ratio of the pseudo–stable population S(t) exceeds the support
ratio of the stationary population S0. Finally, we calculate the area between the
support ratio of the pseudo–stable population S(t) and the stationary population
S0 from time t1 to time t2. The size of this area informs us about the total amount
of the surplus a population gains from a declining fertility.

4 Analysis

We start our analysis by deriving the time t∗ when the support ratio (3) peaks.
Using (Feichtinger and Vogelsang, 1978, equ. (6.92)) we write the dynamics of the
support ratio as

d

dt
log S(t) =

k

µ
[A(t)− AW (t)] =

Ṡ(t)

S(t)
, (5)
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where A(t) and AW (t) denote the mean ages of the total and working age pop-
ulation, respectively. From that we conclude that the support ratio peaks when
the mean age of the total population A(t) equals the mean age of the working age
population AW (t). Solving the equation A(t) = AW (t) for t we obtain

Proposition 1 The time t∗ when the support ratio reaches its maximum is ap-
proximately

t∗ =
(A0 − AW,0)

µ
k
+ t0σ

2
0 − tW,0σ

2
W,0

σ2
0 − σ2

W,0

(6)

with t0 (tW,0) denoting the time when the mean age of the total population A(t)
(working age population AW (t)) is equal to the mean age of the stationary popula-
tion A0 (stationary working age population AW,0) with the same survival function
l(a). In the special case A0 = AW,0 and if lifespan inequality is sufficiently low this
can be further approximated as

t∗ = A0 −
µ

2
. (7)

The proof is given in appendix A. The subscript 0 indicates variables that refer to
a stationary population based on the same life table as the population currently
investigated. Thus, A0 and AW,0 are the mean ages of the corresponding stationary
population and stationary working age population and σ2

0 and σ2
W,0 denote the

variance in age of the corresponding stationary total population and stationary
working age population, respectively.

From (7) we conclude that from time t = 0 when the net reproduction rate is
equal to one it takes approximately the mean age of the corresponding stationary
population minus half a generation length to arrive at the maximum support ratio.
Moreover, it follows from approximations (7) and (30) that the maximum support
ratio is reached at about the same time that the mean age of the pseudo–stable
population is equal to the mean age of the stationary population.

To examine the sensitivity of t∗ to changes in k and µ we compute the deriva-
tives

dt∗

dk
= −A0 − AW,0

σ2
0 − σ2

W,0

µ

k2
(8)

dt∗

dµ
=

A0 − AW,0

σ2
0 − σ2

W,0

1

k
− 1

2
. (9)

The difference of the variances σ2
0−σ2

W,0 and the fraction µ/k2 are always positive.
The difference of the mean ages A0 − AW,0 depends on the survival schedule and
on the age limits of the working age population. In general this difference is pos-
itive in highly developed regions with high life expectancy but may be negative
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in less and least developed regions with low life expectancy. If A0 = AW,0 we get
dt∗/dk = 0, which means that the peak time t∗ does not depend on the speed of
fertility decline k. In the case of A0 > AW,0, the derivative dt

∗/dk is negative, thus
an increase in k (since k is negative this means a slowdown of fertility decline)
causes an acceleration of the peak of the support ratio. In the case of A0 < AW,0,
an increase in k results in an delay of the peak. The derivative dt∗/dµ is zero (which
means t∗ does not depend on µ) if A0−AW,0 = (σ2

0 −σ2
W,0)k/2. An increase in µ de-

lays (accelerates) the peak time of the support ratio if A0 − AW,0 > (σ2
0 − σ2

W,0)k/2
(A0 − AW,0 < (σ2

0 − σ2
W,0)k/2).

The support ratio grows as long as the time derivative in (5) is positive. Since
k < 0 and µ > 0 this is the case as long as A(t) < AW (t), i.e. the mean age
of the total population deceeds the mean age of the working age population. In
the framework of the pseudo–stable population model we start with a very young
population. Therefore, the youth dependency is high and A(t) < AW (t). Since
fertility decreases monotonically, this inequality is fulfilled until t∗ given in (6)
when A(t) = AW (t). Thereafter the increase in the old age dependency depresses
the support ratio resulting in A(t) > AW (t). We conclude that the share of the
working age population, i.e. the support ratio, increases for all t < t∗.

In the next step we look at the maximum surplus in terms of the support
ratio that can be achieved due to a decline in fertility. Therefore, we evaluate the
support ratio S(t) at t∗ and calculate the difference to S0, the support ratio of the
corresponding stationary population. Henceforth, we call this difference the height
h. For this we introduce the ith moments Li for the total population (Keyfitz,
1985, p. 89) and LW

i for the working age population,

Li =

∫ ω

0

ail(a)da and LW
i =

∫
W

ail(a)da. (10)

to arrive at

Proposition 2 The maximum surplus of the support ratio is approximately

h = S(t∗)− S0

=
8LW

0 µ2 + 4kµ
[
LW
2 − LW

1 (2t∗ + µ)
]
+ k2(2t∗ + µ)(LW

2 (2t∗ + µ)− 2LW
3 )

8L0µ2 + 4kµ [L2 − L1(2t∗ + µ)] + k2(2t∗ + µ)(L2(2t∗ + µ)− 2L3)
− LW

0

L0

.

(11)

Again we look at the special case A0 = AW,0 and assume that lifespan inequality is
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sufficiently to obtain the approximation

h =

{
k
[
AW,0k(AW,0L0L

W
2 − AW,0L2L

W
0 + L3L

W
0 − L0L

W
3 )

+(2AW,0L1L
W
0 − 2AW,0L0L

W
1 − L2L

W
0 + L0L

W
2 )µ

]}/
{
L0

[
AW,0k

2(AW,0L2 − L3) + k(L2 − 2AW,0L1)µ+ 2L0µ
2
]}

. (12)

Due to the length and complexity of (11) it does not allow for a straightforward
interpretation but from (12) we conclude that the height h is approximately propor-
tional to the speed of fertility decline expressed as |k| and approximately indirectly
proportional to the generation length µ. We will see later on that this also holds
true for the general case.

Finally, we investigate the intersections of the support ratio S(t) of the pseudo–
stable population and the support ratio S0 of the corresponding stationary popu-
lation. The time interval in between these intersections is the advantageaus period
when an economy enjoys a surplus of labor supply that is above a level that could
be sustained in the long run.

Proposition 3 The points in time that mark the beginning and end of a support
ratio S(t) that exceeds S0 are approximately

t1,2 = 2µL0L
W
0 (A0 − AW,0)±

{
(LW

0 L3 − L0L
W
3 )2k2 −

[
LW
0

2
(L2

2 − L1L3)

+L0L
W
0 (−2L2L

W
2 + LW

1 L3 + L1L
W
3 ) + L2

0(L
W
2

2 − LW
1 L3W )

]
4µk

+
[
−L0L

W
3 + L0L2

Wµ+ LW
0 (L3 − L2µ)

]
k

}1/2/[
(LW

0 L2 − L0L
W
2 )2k

]
. (13)

The center of t1 and t2 does not depend on k but its sensitivity with respect
to generation length µ depends on whether A0 > AW,0 or A0 < AW,0. The length
(duration) of the advantageous support ratio, i.e. t2 − t1 is approximately indirectly
proportional to

√
−k and approximately proportional to

√
µ.

To compute the total amount of the surplus gained from a declining fertility we
calculate numerically the Riemann sum of S(t)−S0 over the time interval from t1
to t2 and call the result ARS. To obtain an analytical expression, we approximate
the area between the two curves by the area of a parabola with equal height and
length, i.e.

AP = 2/3h(t2 − t1) . (14)
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5 Results

To illustrate the dynamics of the model described and analysed in sections 3 and
4 and to investigate the model’s sensitivity with respect to changes in parameters
we start with a stylised mortality schedule and afterwards present results based
on empirical life table data from United Nations, Department of Economic and
Social Affairs, Population Division (2019).

We start our analysis with a survival function where all mortality is concen-
trated at one age. This means everyone survives to age ω and there is no lifespan
inequality,

l(a) =

{
1 if a < ω
0 if a = ω

. (15)

The peak support ratio occurs when A(t) = AW (t), i.e the mean ages of the
total population and the working age population are equal. The point in time at
which this equality occurs depends on the working age interval W . We assume
that working age starts at w and ends at w with 0 ≤ w ≤ w ≤ ω which implies
[w,w] ⊆ [0, ω].

Proposition 4 In the case of concentrated mortality, the time t∗ when the support
ratio peaks is approximately

t∗ =
(w + w)2ktW,0 + 6µ(w + w + ω)− kt0ω

2

k[(w − w)2 − ω2]
. (16)

In the special case A0 = AW,0 which means that the working age interval W is
symmetric around ω/2 we get

t∗ =
ω − µ

2
. (17)

The solution in (17) is equivalent to (7) since in the case of concentrated mortality
the mean age of the corresponding stationary population becomes A0 = ω/2.

To obtain concrete results we investigate the special case w = ω/4 and w = 3ω/4.
We get the maximum support ratio, if we evaluate S(t) at t∗, which is approxi-
mately

S(t∗) =
203

256
+

45µ(3kω2 − 100µ)

64(240µ2 − 20kµω2 + k2ω4)
, (18)

and its derivative with respect to k becomes

dS(t∗)

dk
= −45µω2(1280µ2 − 200kµω2 + 3k2ω4)

64(240µ2 − 20kµω2 + k2ω4)2
. (19)

Since k < 0 and µ, ω > 0 the derivative dS(t∗)/dk in (19) is negative. Thus, if the
absolute value of k increases (i.e. k decreases), which means a more rapid decline
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of fertility, the peak support ratio becomes higher — as expected. To derive the
maximum surplus we subtract S0, the support ratio of the stationary population,
to obtain

h =
75

256
+

45µ(3kω2 − 100µ)

64(240µ2 − 20kµω2 + k2ω4)
. (20)

The beginning and end of the time period when S(t) > S0 are approximately

t1,2 = −µ

2
+

3ω

4
±

√
9k2ω2 − 64kµ

8k
. (21)

As in the general case (13), the center does not depend on k but an increase in µ
shifts the center to the left. The surplus lasts for a time period with length

l = −
√

9k2ω2 − 64kµ

4k
(22)

and is approximately proportional to
√
µ and 1/

√
−k. The total amount of the

surplus, approximated by the area under a parabola, is

AP = −5
√

9k2ω2 − 64kµ (5kω4 − 64µω2)

512(240µ2 − 20kµω2 + k2ω4)
. (23)

For−1 ≪ k < 0 it follows that k2 ≪ |k|. Thus, the numerator grows approximately
proportionally to |k|3/2 and the denominator grows approximately proportionally
to |k|. Therefore, the total amount is approximately proportional to

√
−k . The

first order approximations of the height h, the reciprocal of the length 1/l and of
the total amount AP with respect to k about k = 0 for k < 0 are

h = − ω2k

64µ
+O(k2)

1/l =
1

2

√
−k

µ
+O(k

3/2) (24)

AP =
ω2

√
−k

48
√
µ

+O(k
3/2) .

From this we conclude that for small |k| the height h is approximately proportional
to |k|, the length l is approximately indirectly proportional to

√
−k and the total

amount AP is approximately proportional to
√
−k .

In figure 8 we illustrate the sensitivity of the time t∗ when the support ratio
peaks with respect to changes in the speed of fertility decline k and the genera-
tion length µ and the accuracy of the approximations (7) and (17). The red lines
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represent the values of t∗ in the case of concentrated mortality. In the left panel
µ is fixed at 30 and the speed of fertility decline k ranges from -0.1 to -0.002. In
the right panel k is fixed at -0.01 and µ varies from 15 to 45. The solid red lines
depict the results obtained from numerical evaluations and the dashed red lines
result from the approximation (17). We see that changes in k do not affect t∗ but
it declines with increases in µ as expected from (17). Since the approximation is
perfectly accurate in the case of concentrated mortality and A0 = AW,0, the dashed
and solid red lines coincide.

Figure 4 depicts the support ratio over time for different levels of k, the speed
of fertility decline. All curves are calculated using (1), generation length µ = 30
and maximum life span ω = 80. The time scale is chosen according to the Coale
model, i.e. time = 0 when NRR = 1. As expected from (17), the graphs confirm
that t∗, the point in time when the support ratio reaches its maximum value, does
not depend on k. The trajectory with the slowest fertility decline, i.e. k = −0.005,
reaches the intersection with the support ratio of the stationary population S0 first
and stays above that level for the longest time span. Moreover, the ascending and
descending branch of the support ratio are symmetric with respect to t∗ = (ω−µ)/2.
This is in contradiction to (21) indicating a midpoint at 3ω/4 − µ/2. This deviation
results from the approximations used to derive (21) which delays the intersections
t1 and t2.
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Figure 4: Support ratio over time, concentrated mortality, µ = 30, ω = 80, time =
0 when NRR = 1.

Figure 5 shows the same trajectories as figure 4 but the time scale is shifted
such that time = 0 when NRR = 2. As expected, the higher the speed of fertility
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decline, the earlier the population arrives at t∗. Moreover, also the intersections
with the support ratio of the stationary population S0 occurs earlier if fertility
declines faster. Therefore, starting at NRR = 2, the population arrives earlier in
the stage which we consider the demographic window of opportunity if fertility
decline is faster.
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Figure 5: Support ratio over time, concentrated mortaility, µ = 30, ω = 80, time =
0 when NRR = 2.

The sensitivity of the total amount A, height h and lenght l of the surplus in
the support ratio with respect to changes in k is given figure 10. Again the solid red
lines represent the results for the case of concentrated mortality. The first graph
in the left column depicts the total amount vs. k. It declines along a concave
path which is approximately proportional to

√
−k as we expected from (24). To

illustrate this proportionality more clearly, the first graph in the right column
shows A/

√
−k vs. k. Since this line is almost horizontal, the total amount A is indeed

proportional to
√
−k. The second graph in the left column shows the height h, i.e.

the difference between the peak support ratio and the support ratio of a stationary
population with the same survival schedule, vs. k. Since the decline is almost linear
and because of our findings from (24) we expect that h is proportional to −k and
plot h/−k in the second graph of the right column. The red line increases with a
moderate slope indicating that the proportionality is not as accurate as it was in
the case of the total amount A. The last graph in the left column shows the length
l vs. k. Again because of (24), we expect that the length is indirectly proportional
to

√
−k and plot l

√
−k in the last graph on the right hand side. Again the line has

a slope which indicates some deviations from the expected proportionality due to
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higher order terms.
Fig. 6 illustrates the dynamics of the support ratio over time if the generation

length µ takes on the values 20, 30 and 40. The curves are calculated with a speed
of fertility decline k = −0.01 and the function for g(a, t) given in (1). An increase
in µ shifts the center to the left confirming (17) and flattens the curve.
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Figure 6: Support ratio, concentrated mortality, k = −0.01, ω = 80.

For a detailed analysis of the sensitivity of A, h and l with respect to µ we
have a look at the solid red lines in figure 12 representing the results based on a
concentrated mortality schedule. The left column illustrates A, h and l vs. µ and
the right column shows A/√µ, hµ and l/√µ vs. µ. We see that the total amount A
and the height h decline but the length decreases with an increase of µ. In the
right columns we again check to what extent these quantities are proportional to√
µ, 1/µ and

√
µ, respectively. The red lines in the second and third graph of the

right panel are almost horizontal, indicating that the height h and the length l of
the surplus in the support ratio are indeed approximately proportional to 1/µ and√
µ. In the case of the total amount this is not the case.
In the following, we examine the dynamics of the support ratio using empiri-

cal life tables from United Nations, Department of Economic and Social Affairs,
Population Division (2022). Since our model is in continuous age and time but
life table data are provided for discrete age groups, we use the mortality model of
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Makeham (1867) which uses three parameters α, β and γ,

l(a) = exp

[
α

β

(
1− eβa

)
− γa

]
. (25)

Since we know from section 4 that the sign of A0−AW,0 is crucial for the sensi-
tivity of several results, we choose life tables from three countries at three particular
points in time when the mean ages of the stationary populations resulting from
the given life tables satisfy A0 − AW,0 > 0, A0 − AW,0 < 0 and A0 − AW,0 ≈ 0.
Table 2 depicts the respective values.

country time A0 − AW,0

Japan 2015-2020 1.082
Republic of Korea 1980-1985 -4.761
Sweden 2015-2020 0.063

Table 2: Differences of mean ages A0 − AW,0 for stationary populations resulting
from empirical life tables.

Figure 7 illustrates the life table survivors for these three countries and the
survival functions in continuous age resulting from fitting (25) to the life table
data. The fit is very accurate except for the case of high child mortality. Since the

20 40 60 80 100
age a

0.2

0.4

0.6

0.8

1.0

Life table survivors l(a)

Japan 2015-2020

Rep. of Korea 1980-1985

Sweden 2015-2020

Figure 7: Life table survivors for Japan 2015-2020, Republic of Korea 1980-1985
and Sweden 2015-2020. The dots represent empirical data and the solid lines depict
the survival functions resulting from fitting the Makeham model given in (25). Data
source: United Nations, Department of Economic and Social Affairs, Population
Division (2019).

focus of our analysis is on the dynamics of the share of the working age population,
this three parameter model is sufficient for our purpose.
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The sensitivity of t∗ with respect to changes in the speed of fertility decline k
and generation length µ for these three life tables is illustrated in figure 8. The left
panel depicts t∗ over k, the right panel shows t∗ over µ. Solid lines represent the
results from numerical evaluations and dashed lines were determined using approx-
imation (7). We see that in the case of the Swedish life table the approximation
is pretty accurate because the difference A0 −AW,0 — which we neglect when ap-
proximating (6) by (7) — is small. In the case of life tables from Japan and Korea
the deviations from the approximations are much larger because A0 − AW,0 > 0
for Japan and A0 − AW,0 < 0 for Korea. The left panel shows that the deviation
becomes larger for smaller absolute values of k and the right panel shows that it
becomes larger for larger µ. This happens because in (6) the difference A0 −AW,0

is multiplied by the fraction µ/k. This fraction is negative since µ > 0 and k < 0
and then divided by the difference σ2

0 − σ2
W,0, which is positive, because the age

variance of the total population, σ2
0, is greater than the age variance of the working

age population, σ2
W,0. As a consequence, in the case of Japan the exact value of t∗ is

greater than the approximation (7) for small absolute values of µ/k but smaller for
large absolute values of µ/k. What is remarkable is that in the case of a very slowly
declining fertility the maximum support ratio is already achieved before NRR = 1
at time t = 0. In the case of Korea the difference A0 − AW,0 has a larger absolute
value and, in turn, the exact value of t∗ always exceeds the approximation.
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Figure 8: Time t∗ of peak support ratio for concentrated mortality and three
empirical life tables.

Figure 9 illustrates the dynamics of the support ratio over time for these three
life tables and variations in k. For the computation of these support ratios we
assume that working age lasts from a1 = 20 to a2 = 65. For the speed of fertility
decline we use the values k = −0.05,−0.02,−0.01 and−0.005. Moreover, we fix the
generation length at µ = 30 years. As expected, and as we already saw previously,
the curves become steeper for faster fertility declines, i.e. for higher absolute values
of k. It seems counter intuitive that in the case of a slower fertility decline the
support ratio S(t) intersects the benchmark S0 earlier. This is an artefact that
arises because we standardize the time scale such that the net reproduction rate is
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one at t = 0. If two populations start at the same net reproduction rate above one
but their fertility declines with different rates k, then they are actually situated at
different times t < 0 in our formal model. Of course the time span until arriving
at the first intersection of S(t) with S0 is shorter if the fertility decline happens at
a higher rate.

From (8) we conclude that the sign of the difference A0 − AW,0 affects the
sign of the derivative dt∗/dk and, consequently, determines the direction of the shift
of the peak for variations in k. The lower left panel shows the results obtained
with the life table from Sweden in the period 2015–2020. With this life table
the mean ages of the stationary total population A0 and stationary working age
population AW,0 are almost equal. As a result, the peak does not shift appreciably
with variations in k. The upper left panel illustrates results based on the life table
of Japan in the period 2015–2020. In this case the difference A0 −AW,0 is positive
and, consequently, the peak moves to the right, i.e. it is achieved later, as the
speed of fertility increases. The opposite effect can be observed in the upper right
corner illustrating the support ratio trajectories resulting from the life table of
the Republic of Korea in the time period 1980–1985. The difference A0 − AW,0 is
negative and the peak moves to the left as the speed of fertility decline accelerates.
These findings regarding the sensitivity of the timing of the peak t∗ with respect
to variations in k are perfectly in line with what we would expect from (8).
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Figure 9: Support ratio over time for three different life tables and four different
speeds of fertility decline compared to the constant support ratio of a stationary
population.

For a detailed discussion of the influence of the speed of fertility decline k let
us again have a look at figure 10. The dashed lines represent results obtained from
real life tables. We used ochre for Korea, green for Japan and blue for Sweden. The
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curves for Japan and Sweden are similar to those obtained with the concentrated
mortality schedule. In particular the proportional relationship between the total
amount A and

√
−k is remarkable. The results based on the Korean life table

from the period 1980-1985 differ significantly from this. As we can see from fig-
ure 7, lifespan inequality is much larger for this life table and the absolute value
of A0 − AW,0 in table 2 is also much larger than for the other two life tables. This
causes pronounced deviations from the results obtained with the other survival
schedules if the speed of fertility decline is low. For a more rapid decline of fer-
tility, the results for Korea are close to the other three lines and we can conclude
that the relationships between A, h and l vs. k are still in good order.
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Figure 10: Total amount, height and length of the surplus in the support ratio for
concentrated mortality and three empirical life tables and variations in k.

The support ratio trajectories depicted in figure 11 illustrate the influence of
changes in the generation length µ. In this case, (9) gives us a hint as to how we
expect variations in µ to affect t∗. We use life tables from the same three countries
at the same time periods as before. The speed of fertility decline is constant at
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k = −0.01 but generation length µ takes the values 20, 30 and 40. In reality the
variation in the generation length is much smaller but we choose these values to
make the sensitivity of the results visible. In all three cases, a higher generation
length results in a flatter ascent and descent and a lower peak of the support ratio.
In the lower left panel (Sweden 2015–2020, A0 − AW,0 ≈ 0) the peak moves to
the left with an increase in the generation length. This is what we expect, since
(9) shows that dt∗/dµ is negative if A0 − AW,0 = 0. In the upper left panel (Japan
2015–2020, A0 − AW,0 > 0) the peak moves to the left as the generation length
increases. In the upper right panel (Republic of Korea 1980–1985, A0 −AW,0 < 0)
the peak moves to the right with an increase in generation length µ. These two
graphs are again perfectly in line with our expectations resulting from (9).
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Figure 11: Support ratio over time for three different life tables and three dif-
ferent generation lengths compared to the constant support ratio of a stationary
population.

For a more accurate assessment of the influence of µ on the dynamics of the
support ratio we revisit figure 12. Again, the dashed lines result from real life
tables and the mapping between colours and countries remains as before – ochre
for Korea, green for Japan and blue for Sweden. As expected, the curves based
on Japanese and Swedish life tables are again nearby those curves that stem from
concentrated mortality and the proportional relationships between h vs. 1/µ and l
vs.

√
µ remain. Again the results we obtained with the Korean life table deviate

and the deviation increases with increases in µ.
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Figure 12: Total amount, height and length of the surplus in the support ratio for
concentrated mortality and three empirical life tables and variations in µ.
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6 Summary and Conclusions

The aim of our study is to analyse the temporary surplus in the share of the working
age population that occurs when fertility declines in a population with initially high
fertility. For this purpose we developed a mathematical model that resembles those
characteristics of such a transitional population that are relevant for our research
questions, but at the same time allows for meaningful and interpretable analytical
solutions. The interplay of mathematical analysis with numerical evaluations gives
insight into the dynamics of the support ratio when fertility changes at a constant
rate over time. In particular, our analysis provides an in–depth understanding of
the sensitivity of the results to variations in the numerical parameters as well as
variations in the underlying survival functions.

We consider an age structure to be economically advantageous if the support
ratio at a given time exceeds the support ratio of a stationary population based
on the same survival function, i.e. S(t) > S0. In the case of a population with an
initially high but declining fertility, the favorable period begins at t1 when S(t)
intersects S0 from below and ends at t2 when S(t) intersects S0 from above. The
timing of the beginning t1 depends strongly on the speed of fertility decline k but
also on the generation length µ and the survival function l(a). This may be before
or after the time when the net reproduction rate NRR reaches replacement level.

The length l of this advantageous period is given by the difference t2 − t1 (13)
and again depends on k, µ and l(a). A faster decline in fertility as well as a shorter
generation length shorten this time interval. The length is approximately inversely
proportional to

√
−k (24) and approximately proportional to

√
µ.

We denote the difference between the support ratio peak S(t∗) and S0 as the
height h of the surplus under consideration. This height also depends on k, µ
and l(a). A faster decline and a shorter generation length result in a higher peak.
The height is approximately proportional to −k (24) and approximately inversely
proportional to µ.

We consider the area A between the support ratio of the pseudo–stable popu-
lation S(t) and the stationary population S0 from time t1 to time t2 as a measure
for the total amount of the gain from the surplus in the support ratio. This area is
proportional to the height and length of the part of the trajectory S(t) above S0

(14). Consequently, the size (area) A is approximately proportional to
√
−k and

approximately indirectly proportional to
√
µ (23) and (24). The survival function

l(a) and the lower and upper bound of the working age also have an influence on
the height h (11) and length l (13) and, consequently, on the size.

The initial net reproduction rate NRR in combination with the speed of fertility
decline k has the strongest influence on the time it takes to arrive at the peak time
t∗. This most important influence is hidden by choosing the time scale such that
t = 0 when NRR = 1. Within this particular time scale, the timing of the peak t∗
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is determined by the mean ages A0 and AW,0, as well as µ, k, t0, tW,0, σ
2
0 and σ2

W,0

(prop. 1 and equ. (6)). If A0 = AW,0 the timing of the peak does not depend on
k but only on A0 and µ, if A0 ̸= AW,0 changes in µ and k alter the timing of the
peak (see figs. 9 and 11).

The benefit derived from an advantageous age structure lasts as long as the
support ratio S(t) is above the support ratio S0 of the corresponding stationary
population. Again, the initial net reproduction rate NRR in combination with the
speed of fertility decline k has the strongest influence on the time it takes to arrive
at the onset t1 and end t2 of the benefit. In addition, t1 and t2 are determined by
the survival schedule l(a), generation length µ, speed of fertility decline k, and the
mean ages A0 and AW,0 (prop. 3 and equ. (13)). In the special case of concentrated
mortality t1,2 depend on µ, ω and k (21).

A Proofs

Derivation of equation (1)

If the number of births at time t is

B(t) = B(0) exp

(
k

2
t+

k

2µ
t2
)
,

the number of births at time t− a is

B(t− a) = B(0) exp

(
k

2
(t− a) +

k

2µ
(t− a)2

)
= B(0) exp

(
k

2
t+

k

2µ
t2
)
exp

(
−k

2
a+

k

2µ
a2 − k

µ
at

)
= B(t)g(a, t)

Proof of proposition 1

We use the moments (10) to express the mean ages of the stationary population
and of the stationary working age population

A0 =
L1

L0

and AW,0 =
LW
1

LW
0

. (26)
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The mean age of the pseudo–stable population is

A(t) =

∫ ω

0
aN(a, t)da∫ ω

0
N(a, t)da

=

∫ ω

0
aB(t− a)l(a)da∫ ω

0
B(t− a)l(a)da

=

∫ ω

0
aB(t)g(a, t)l(a)da∫ ω

0
B(t)g(a, t)l(a)da

=

∫ ω

0
ag(a, t)l(a)da∫ ω

0
g(a, t)l(a)da

. (27)

Then we introduce the linear approximation for the function g(a, t) in (1) around
a = 0 (see Feichtinger and Vogelsang, 1978, equ. (6.3) and p. 41)

g(a, t) = 1− k

2
a+

k

2µ
a2 − kt

µ
a+ o(k) (28)

and use the birth rate (2) to express the mean age of the pseudo–stable population
as

A(t) = b(t)

∫ ω

0

ag(a, t)l(a)da ≈

∫ ω

0
a
(
1− k

2
a+ k

2µ
a2 − kt

µ
a
)
l(a)da∫ ω

0

(
1− k

2
a+ k

2µ
a2 − kt

µ
a
)
l(a)da

=
L1 − L2

k
2
+ L3

k
2µ

− L2
k
µ
t

L0 − L1
k
2
+ L2

k
2µ

− L1
k
µ
t
. (29)

Then we derive the time t0 when the mean age of the pseudo–stable population
equals the mean age of the stationary population. To do this, we use the mean age
of the stationary population (26) and of the pseudo–stable population (29) and
solve the equation A0 = A(t) for t,

L1

L0

=
L1 − L2

k
2
+ L3

k
2µ

− L2
k
µ
t

L0 − L1
k
2
+ L2

k
2µ

− L1
k
µ
t

L1L0 + L2
1

k

2
+ L1L2

k

2µ
− L2

1

k

µ
t = L1L0 + L0L2

k

2
+ L0L3

k

2µ
− L0L2

k

µ
t

(L0L2 − L2
1)
t

µ
=

L2
1 − L0L2

2
+

L0L3 − L1L2

2µ

and obtain

t0 = −µ

2
+

L0L3 − L1L2

2(L0L2 − L2
1)

= −µ

2
+ A0θ (30)

with

θ =
L3

L1
− L2

L0

2σ2
0 .

(31)
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Analogously, we derive for the working age population

tW,0 = −µ

2
+ AW,0θW . (32)

This solution does not depend on k due to the linear approximation of g(a, t).
Thus, in a pseudo–stable population the time interval between the point in time
when NRR = 1, which we normalize as t = 0, and the point in time t0 when the
mean ages A0 and A(t) are equal depends only on the generation length µ and on
the mortality schedule l(a) but not on k determining the speed of fertility decline.
An increase in µ causes a decrease in t0, i.e. the event A(t) = A0 occurs earlier.

We introduce linear approximations for A(t) and AW (t) at t0 and tW,0 applying
(Feichtinger and Vogelsang, 1978, equ. (6.8)) for the rate of change of the mean
age,

A(t) ≈ A0 + (t− t0)

(
−k

µ

)
σ2
0 (33)

AW (t) ≈ AW,0 + (t− tW,0)

(
−k

µ

)
σ2
W,0 . (34)

Now we use (33) and (34) to solve the equation A(t) = AW (t) for t to obtain

t∗ =
(A0 − AW,0)

µ
k
+ t0σ

2
0 − tW,0σ

2
W,0

σ2
0 − σ2

W,0

.

To obtain approximation (7) we insert (30) and (32) into the above expression for
t∗ to obtain

t∗ =
(A0 − AW,0)

µ
k
+ A0θσ

2
0 − AW,0θWσ2

W,0

σ2
0 − σ2

W,0

− µ

2
.

Then we use the assumption A0 = AW,0 and the approximations θ ≈ θW ≈ 1 to
get

t∗ = A0 −
µ

2
.

The relationship θ = θW = 1 is exact if mortality is concentrated at one fixed
age and Fent (2023) shows that it is reasonable to assume θ ≈ θW ≈ 1 if lifespan
inequality is moderate.

Proof of proposition 2

We introduce the linear quadratic approximation of (1) around a = 0,

g(a, t) = 1− k

2
a+

k

2µ
a2 − kt

µ
a+

1

2

(
−k

2
a+

k

2µ
a2 − kt

µ
a

)2

+ o(k2) . (35)
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Then we substitute (35) into the equation for the support ratio (3),

S(t) =

[
LW
0 +

(
−k

2
− kt

µ

)
LW
1 +

(
k2

8
+

k2t2

2µ2
+

k

2µ
+

k2t

2µ

)
LW
2

+

(
− k2t

2µ2
− k2

4µ

)
LW
3 +

k2

8µ2
LW
4

]
/[

L0 +

(
−k

2
− kt

µ

)
L1 +

(
k2

8
+

k2t2

2µ2
+

k

2µ
+

k2t

2µ

)
L2

+

(
− k2t

2µ2
− k2

4µ

)
L3 +

k2

8µ2
L4

]
, (36)

and evaluate this expression at t∗ to obtain the maximum surplus S(t∗)−S0 given
in (11).

Proof of proposition 3

To find the points t1 and t2 when the support ratio of the pseudo–stable population,
S(t), is equal to the support ratio of the stationary population, S0, we set S(t)
from (36) equal to S0 = LW

0 /L0 and solve for t and get

t1,2 = 2µL0L
W
0 (A0 − AW,0)±

{
(LW

0 L3 − L0L
W
3 )2k2

−
[
LW
0

2
(L2

2 − L1L3) + L0L
W
0 (−2L2L

W
2 + LW

1 L3 + L1L
W
3 ) + L2

0(L
W
2

2 − LW
1 L3W )

]
4µk

+
[
−L0L

W
3 + L0L2

Wµ+ LW
0 (L3 − L2µ)

]
k

}1/2

/
[
(LW

0 L2 − L0L
W
2 )2k

]
. (37)

Proof of proposition 4

With (15) we get the ith moments

L0 = ω, L1 = ω2/2, L2 = ω3/3, L3 = ω4/4,

and life expectancy, mean age and variance of the stationary population and θ

e00 = ω,A0 = ω/2, σ2
0 = ω2/12 and θ = 1.

If we define the working age interval W = [w,w], the i-th moments for the working
age population become

LW
i = (wi+1−wi+1)/i+1,

which results in

AW,0 = (w+w)/2, σ2
W,0 = (w−w)2/12, and θW = 1.
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From this and equations (30) and (32) we get t0 (tW,0), the time when the mean
age of the pseudo–stable (working age) population equals the mean age of the
stationary population,

t0 = =
ω − µ

2
and (38)

tW,0 = =
w + w − µ

2
. (39)

Then we insert (38) and (39) into (6) and obtain (16). Assuming that the working
age interval W is symmetric around ω/2 means w = ω − w. Inserting this into
(16) leads to (17). We sum up, that under these simplifying assumptions we get
t0 = tW,0 = t∗ = (ω−µ)/2 which only depends on µ and ω but not on k.
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