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Traditional stochastic mortality models tend to extrapolate trends without exploring underlying drivers. Those that 
do link mortality with other variables usually limit themselves to GDP. This article introduces a novel stochastic 
mortality model that incorporates a broad spectrum of variables related to economic, environmental, and lifestyle 
factors to predict mortality. The model uses principal components derived from these variables in an extension of 
the Niu and Melenberg (2014) model and is applied to 37 countries from the Human Mortality Database. Model fit is 
superior to the Lee-Carter model for 18 countries and closely matches it in others. The forecasting accuracy of the 
proposed model improves on the Niu-Melenberg model for half of the countries studied under various jump-off 
years. Sustainable populations require an intricate understanding of the interplay between mortality and its 
determinants. The model is designed to facilitate scenario building and policy planning, including strategies for 
population sustainability. By examining a comprehensive array of variables, this model contributes to a holistic 
comprehension of population dynamics. 
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1 Introduction 

Over the past century, the average human lifespan has increased significantly. In 1913, the global 
life expectancy was estimated to be 34.1 years, while in 2001 it increased to 66.6 years, and by 
2015, it had further increased to 71.8 years (Riley, 2005; Wang et al., 2016). Forecasting the 
evolution of mortality rates is very important for actuarial practice, as well as for health care and 
pension systems in general, and so forecasts should be carefully assessed. 

Yet, forecasts are based on past and present trends and a fundamental uncertainty is the extent 
to which these trends will remain valid in the future. Climate change and the economic effects of 
the green transition create an interplay of forces that cannot simply be ignored when forecasting 
mortality. Hence it is important to model uncertainty not only to the extent that it is expressed as 
variability around current trends, but also as to incorporate sources of variation that can affect, 
perhaps even reverse current trends. What drives trends in mortality and what would happen if 
those drivers changed over time? Human health depends on a large number of factors, including 
biological, environmental and social ones. These drivers may have reinforcing or opposing effects 
and are subject to varying degrees of uncertainty. This paper aims to develop a model that can 
incorporate a wide range of covariates and be used to forecast mortality under different 
scenarios. The main assumption is that mortality and the covariates do not diverge in the long 
run, without requiring causality assumptions. By broadening the scope of covariates used in 
stochastic mortality modeling and developing an interpretable model, this study aims to provide 
more accurate forecasts of mortality rates. 

Previous research in the field of stochastic mortality models incorporating external variables is 
relatively scarce and usually only includes GDP as the driver of mortality reductions. Niu and 
Melenberg (2014) and Seklecka et al. (2019) approach the issue with a single-population model, 
while Boonen and Li (2017) presents a multi-population model. Dutton et al. (2020) extends 
Seklecka et al. (2019) by including the effect of temperature anomalies on mortality. On the other 
hand, there is a vast literature that forecasts mortality using a multiplicity of variables, including 
the ones in this study, which all have a well-known link with mortality. However, to the author’s 
knowledge this it is the first study in which they are included together in a stochastic mortality 
model.  

The contribution of this study is to show how broadening the scope of external variables included 
in stochastic mortality models can improve forecasts compared to Niu and Melenberg (2014) and 
at the same time allow actuarial practitioners and policymakers to use interpretable models to 
assess the impact of different scenarios on mortality. Additionally, the study will explore the 
extent to which different variables have a disparate impact on mortality in different countries, 
highlighting the need to tailor the analysis to each country’s specific characteristics and history. 

The rest of the paper is organized as follows. Section 2 presents a review of the literature on 
stochastic mortality models, with a focus on the ways to include external variables in the 
modeling process. The single-population model with external variables (SEV) is introduced in 
section 3 along with details about the fitting process, about the variables and an analysis of the 
characteristics of the time series used. The results are presented in section 4, with a focus on 5 
countries and a general overview of goodness of fit and forecasting performance for all countries 
considered. Section 5 concludes with a discussion of the findings. 



2 Literature review 

The approaches to forecast mortality are generally classified into three categories, namely the 
extrapolation, explanation and the expectation ones (Stoeldraijer et al., 2013). Extrapolation 
approaches assume that existing trends and patterns in mortality rates by age are regular enough 
to continue into the future. Explanation approaches model future mortality with exogenous 
variables that have a known link to mortality, like smoking and lung cancer, using structural or 
epidemiological equations. The expectation approach instead incorporates expert opinions 
regarding various aspects of mortality. The three approaches can coexist in a single model and 
the boundaries between the approaches can be blurred. Using external covariates to model 
mortality is close to the explanation approach. However, when applied without explicitly 
modeling the dependency structure between variables, this results in a model closer to 
extrapolative ones. The present work hence draws partly from the explanation and partly from 
the extrapolation approach, which is the one stochastic modeling has mostly concentrated on 
(Cairns et al., 2011). A common approach to extrapolative modeling is to extend past trends into 
the future by fitting linear trends for log-mortality rates with a temporal component that can be 
specified, for example, through a random walk with a linear or quadratic drift. These models may 
be accurate in the short run and backtesting, but they are unable to identify turning points and 
are not useful for assessing mortality under various development and policy scenarios. Even 
when models allow for the incorporation of expert judgment to set mortality targets (e.g., 
Boumezoued et al. (2019)), these targets are essentially set exogenously. 

The link between economic development and mortality has been widely studied over the past 
decades. Preston (1975) described the association between life expectancy and per capita income 
almost 50 years ago. Further studies established both positive (Brenner (2005), Birchenall 
(2007)) and negative (Tapia Granados (2008), Tapia Granados and Ionides (2011), Tapia 
Granados and Ionides (2017)) effects of economic growth. 

There are examples of stochastic mortality models that incorporate economic variables in the 
context of extrapolative models based on Lee and Carter (1992). Hanewald (2011) describes a 
relationship between the latent factor of the Lee-Carter model, GDP and unemployment. Building 
on that, Niu and Melenberg (2014) propose a more general model that allows for multiple latent 
and multiple exogenous factors and offers an application using GDP as a predictive variable. An 
extension to the multipopulation case is provided by Boonen and Li (2017), with a model that 
allows for additional exogenous variables and where the latent factor of the Lee-Carter model is 
dropped entirely. Most notably, they focus on multiple groups of populations, including post-
Soviet countries who experienced a mortality increase after the drop in GDP due to the 
dissolution of the Soviet Union: the temporary increase in mortality in those countries before 
GDP recovered solidifies the relationship between GDP and mortality. Bozzo et al. (2021) 
represents a further development applied to the mortality between regions in Italy. 

Other models lend themselves to the inclusion of economic variables. The model from O’Hare and 
Li (2012), which extends the model of Plat (2009) and allows for additional terms to estimate 
young mortality, is modified by Seklecka et al. (2019) by using the correlation between GDP and 
mortality. Dutton et al. (2020) took this further by multiplying a term of the model by the 
correlation between temperature anomalies and mortality, emphasizing the importance of 
environmental effects. Non-economic explanatory variables have also been included in some 
models. For example, French and O’Hare (2014), building on King and Soneji (2011) and on the 



literature that links mortality to lifestyle and dietary variables, present a model with GDP, health 
care expenditures, tobacco and alcohol consumption, fat intake and fruit and vegetables 
consumption. 

More recently, Li and Shi (2021) propose a global vector auto-regressive (GVAR) approach that 
can model mortality rates for a large number of populations with the inclusion of global factors. 
These could be external factors like GDP or other covariates. In their application, though, the 
authors only employ the average of the mortality rates of the 15 countries they include, as a 
proxy for the global advancement of medical treatments. 

An important challenge when modeling mortality by including multiple economic, social, 
environmental and technological factors is the lack of micro-level data. Ideally, death rates would 
need to be available for every possible subpopulation defined by every combination of the factors 
one wishes to study, or even at the individual level in case of continuous factors, covering several 
decades and the whole population. Although there are some studies working with individual data 
(i.e. Cairns et al. (2019)), the time frame of available data and the selection of covariates is 
usually limited, resulting in models that apply only for a limited age range. Therefore, it is 
necessary to use factors that can be thought of having a wider, general effect on a population. 
Since the relationship between the external factor and mortality is rarely direct, much less known 
with certainty, these models lie somewhere between pure extrapolation models and explanation 
models. 

An alternative approach to modeling mortality with external factors is to divide the population 
into subpopulations based on a specific covariate, such as an affluence or development index, and 
use a multipopulation model for the different subpopulations, ensuring coherent forecasts. This 
method does not explicitly include the covariate in the model, but instead forecasts mortality for 
each subpopulation separately, assuming that the subdivision of the population according to the 
covariate is stable and accurate. Like regions in a state (i.e. Bozzo et al. (2021) and Danesi et al. 
(2015) for two examples with Italian regions), other groupings of the population at the 
subnational level can be reasonably believed to have a converging mortality pattern in the long 
run, while allowing for divergence in the short run. For ranked groups, a desirable outcome is for 
groups to preserve their ordering, that is, to avoid crossovers in estimates of mortality rates. 

An example of this approach is given by Villegas and Haberman (2014), where a composite 
deprivation index is used to rank small areas in England, classify them based on their rank and 
track their mortality counts. The authors show how less deprived quintiles had lower mortality 
throughout the period and also experienced faster mortality declines than more deprived 
quintiles, leading to a widening of mortality differentials by socioeconomic status. 

3 Methodology and data 

The availability and comparability of data across multiple countries is a main concern of this 
study, which meant that data sources have been carefully selected in order to ensure 
comparability and both the countries analyzed and the variables included reflect the availability 
of high-quality, comparable data. 

The mortality data used in this article is limited to males and has been sourced from the Human 
Mortality Database (HMD), imported into R through the HMDHFDplus package. All 42 available 



countries were included. The choice of the external variables has been more problematic. On one 
hand, plausible covariates are variables that have already shown a link with mortality at the 
individual level or in forecasting or non-forecasting population-wide models. These include GDP, 
health care spending, other affluence measures, education, up to lifestyle variables like alcohol 
and tobacco consumption, obesity, marital/cohabitation status etc. On the other hand, 
comparability required that the external variables be chosen among those available from reliable, 
official data sources, like WHO or FAO databases, Penn World Tables and others, with time series 
extending as far back as the 1970s. The model estimates males and females separately and 
although only males are discussed for brevity, all variables, including mortality data, are available 
for females as well. Model estimation has been carried out with a version of the StMoMo R package 
modified by the author to allow for the inclusion of external variables. 

3.1 Modeling methodology 

The model proposed in this article is based on the Lee-Carter model, where the latent factor is 
substituted by one or more factors obtained from external variables through principal 
components analysis (PCA). The methodology is a mix of Niu and Melenberg (2014), Boonen and 
Li (2017) and French and O’Hare (2014), and can be summarized as follows: 

1. Select possible covariates based on availability of data for a wide set of countries, an 
extended number of years and from reputable data sources. In addition to GDP and other 
affluence-related variables, consider variables related to environmental effects (i.e. air 
quality) and to lifestyle choices (i.e. alcohol consumption) that have a strong empirical link 
to mortality; 

2. Perform tests on the possible covariates to assess their characteristics, i.e. determine 
whether they are stationary, non-stationary or stationary with structural breaks. Explore 
the long-term relationships between them and mortality, i.e. by checking whether 
cointegration relationships exist and are stable between countries; 

3. For all countries with available data, fit the following single-population model, based on 
the model specified by Niu and Melenberg (2014): 

𝑙𝑜𝑔(𝑚𝑥,𝑡) = 𝑎𝑥 +∑𝑏𝑗,𝑥𝑘𝑗,𝑡

𝐽

𝑗=1

+∑𝑐𝑙,𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

+ 𝜖𝑥,𝑡, 

  with 𝐽 age-period terms (𝐽 = 0 or 𝐽 = 1 in the applications) and 𝐿 orthogonal external 
factors 𝑔𝑙,𝑡. The external factors are combinations of multiple external variables, in order 
to reduce dimensionality and solve identification issues akin to the use of principal 
components in Boonen and Li (2017).  

The proposed approach tries to minimize assumptions about the regularity of mortality rates and 
of the covariates. The main assumption instead is that there are stable long-term relationships 
between covariates and mortality, even if the series themselves aren’t stationary or exhibit 
structural breaks. To this end, the cointegration analysis at step 2 investigates the existence of 
said long-term relationships: the cointegration coefficients themselves, though, aren’t used in the 
model. The assumption of a long-term relationship between variables is a crucial one if the 
resulting model is to be used in scenario planning where forecasts are required under deviations 
from current trends. 



3.2 Parameter estimation 

The fitting procedure of the SEV models draws upon the Generalized Age-Period-Cohort (GAPC) 
models as implemented in the StMoMo R package (Villegas et al., 2018), which is itself based on 
the gnm R package, drawing from Niu and Melenberg (2014) as well. The StMoMo package has 
been extended in order to allow for external terms in the fitting procedure. Even though StMoMo 
allows offsetting terms to be included in the model, they are wholly external to the fitting process 
and therefore age loadings can’t be fit for them without modifying the package. The following 
implementation bridges this gap in capability. 

The SEV model for 𝐽 age-period terms and 𝐿 external terms is as follows: 

𝑙𝑜𝑔(𝑚𝑥,𝑡) = 𝑎𝑥 +∑𝑏𝑗,𝑥𝑘𝑗,𝑡

𝐽

𝑗=1

+∑𝑐𝑙,𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

+ 𝜖𝑥,𝑡. 

 

The GAPC models model deaths instead of death rates. This is equivalent to fitting death rates 
and therefore death rates will be used in the following instead of deaths and exposures for 
compactness. 

The terms 𝑔𝑙,𝑡 are linear combinations of the 𝑂 external variables ℎ𝑜,𝑡, with 𝐿 < 𝑂. In the 
applications, 𝐽 = 1.  

The fitting algorithm is as follows: 

• Obtain yearly deaths by age D𝑥,𝑡 , their correspondent exposures E𝑥,𝑡 (the ratio of these 

two quantities is equivalent to death rates m𝑥,𝑡) and 𝑂 external variables ℎ𝑜,𝑡  for the given 
country; 

• Perform a singular value decomposition on the scaled matrix of ℎ𝑜,𝑡 external variables, 
retain the 𝐿 components which explain a share of variance larger than a set threshold, up 
to a given maximum of components, denote them with 𝑔𝑙,𝑡;  

• Estimate the model with gnm, obtaining the quantities 𝑎𝑥, 𝑏𝑗,𝑥, 𝑘𝑗,𝑡 and 𝑐𝑙,𝑥. 

• Fit the rates using the estimated parameters. 

• Transform the parameters so that they satisfy the identifiability constraints. 

• Fit the rates with the transformed parameters and check whether the transformation 
preserves the rates. If so, output the model. 

The variance threshold, the maximum number of principal components and whether to include 
an age-period term are parameters set before fitting. The parameters, as is usual for mortality 
models based on the Lee-Carter model, are not identified without additional constraints. For 
example, setting 𝐽 = 1, with 𝑐∗ ∈ ℝ𝐽, 𝑑∗ ≠ 0 and 𝑒∗ ∈ ℝ𝐿 , it is possible to obtain, for the logarithm 
of the fitted rate 𝜇𝑥,𝑡: 



𝜇𝑥,𝑡 = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 +∑𝑐𝑙,𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

= 𝑎𝑥 + 𝑏𝑥𝑘𝑡 +∑𝑐𝑙,𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

+∑𝑒𝑙𝑏𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

−∑𝑒𝑙𝑏𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

+ 𝑏𝑥𝑐
∗ − 𝑏𝑥𝑐

∗

= (𝑎𝑥 − 𝑏𝑥𝑐
∗) +

𝑏𝑥
𝑑∗
𝑑∗ (𝑘𝑡 −∑𝑒𝑙

∗𝑔𝑙,𝑡

𝐿

𝑙=1

+ 𝑐∗) +∑(𝑐𝑙,𝑥 + 𝑒𝑙
∗𝑏𝑥)𝑔𝑙,𝑡

𝐿

𝑙=1

= �̃�𝑥 + �̃�𝑥�̃�𝑡 +∑�̃�𝑙,𝑥𝑔𝑙,𝑡

𝐿

𝑙=1

,

 

with 

�̃�𝑥 = 𝑎𝑥 − 𝑏𝑥𝑐
∗

�̃�𝑥 =
𝑏𝑥
𝑑∗

�̃�𝑡 = 𝑑∗ (𝑘𝑡 −∑𝑒𝑙
∗𝑔𝑙,𝑡

𝐿

𝑙=1

+ 𝑐∗)

�̃�𝑙,𝑥 = 𝑐𝑙,𝑥 + 𝑒𝑙
∗𝑏𝑥.

 

It follows then that 𝑐∗, 𝑑∗ and 𝑒𝑙
∗ need to be functions of the parameters such that, after the 

transformation, calculating 𝑐∗, 𝑑∗ and 𝑒𝑙
∗ again yields 𝑐∗ = 0, 𝑑∗ = 1 and 𝑒𝑙

∗ = 0. 

The following normalization constraints, based on Niu and Melenberg (2014) and Boonen and Li 
(2017) are proposed: 

∑𝑏𝑥

𝑁

𝑥=1

= 1, 

∑𝑘𝑡

𝑇

𝑡=1

= 0, 

𝑘 = (𝑘1, … , 𝑘𝑇) ≠ 0, 

 

∑𝑘𝑡𝑔𝑙,𝑡

𝑇

𝑡=1

= 0,  for 𝑙 = 1,… , 𝐿, 

with the last constraint describing that the sample covariance of 𝑘𝑡 and 𝑔𝑙,𝑡 is 0. These 
correspond to the following transformations: 



𝑐∗ = −
∑ 𝑘𝑡
𝑇
𝑡=1

𝑇

𝑑∗ =∑𝑏𝑥

𝑁

𝑥=1

𝑒𝑙
∗ = 𝑐𝑜𝑣(𝑔𝑙𝑡, 𝑘𝑡)/𝑣𝑎𝑟(𝑔𝑙𝑡) for 𝑙 = 1,… , 𝐿,

 

with cov() and var() denoting sample covariance and variance, respectively. In order to 
demonstrate that the proposed constraints identify the model uniquely, the following theorem 
must be proven: 

Theorem 1 (Identification): Let 𝜇 = (𝜇𝑥,𝑡)𝑥=1,…,𝑁,𝑡=1,…,𝑇 = 𝜇(𝜃), where 𝜇 = 𝜇(𝜃) satisfies 𝜇𝑥,𝑡 =

𝑎𝑥 + 𝑏𝑥𝑘𝑡 + ∑ 𝑐𝑙,𝑥𝑔𝑙,𝑡
𝐿
𝑙=1  for some 𝜃 = ((𝑎𝑥)𝑥=1,…,𝑁, (𝑏𝑥)𝑥=1,…,𝑁, (𝑘𝑡)𝑡=1,…,𝑇, (𝑐𝑙,𝑥)𝑥=1,…,𝑁,𝑙=1,…,𝐿). 

Then the parametrization 𝜃0 satisfying the normalization constraints above satisfies the 
following: 

• 𝜃0 is a function of 𝜃. 

• 𝜇 is a function of 𝜃 through 𝜃0. 

• The parametrization of 𝜇 by 𝜃0 is exactly identified. That is, if 𝜃1 ≠ 𝜃2 are two sets of 
parameters satisfying the normalization constraints, then 𝜇(𝜃1) ≠ 𝜇(𝜃2). 

Proof of Theorem 1: The proof follows the ones in Niu and Melenberg (2014) and Boonen and Li 
(2017). 

• For any 𝜃, use 𝜇𝑥,𝑡 = (𝑎𝑥 − 𝑏𝑥𝑐
∗) +

𝑏𝑥

𝑑∗
𝑑∗(𝑘𝑡 − ∑ 𝑒𝑙

∗𝑔𝑙,𝑡
𝐿
𝑙=1 + 𝑐∗) + ∑ (𝑐𝑙,𝑥 + 𝑒𝑙

∗𝑏𝑥)𝑔𝑙,𝑡
𝐿
𝑙=1  and 

construct 𝜃0 by letting 𝑑∗ = ∑ 𝑏𝑥
𝑁
𝑥=1 , 𝑐∗ = −

∑ 𝑘𝑡
𝑇
𝑡=1

𝑇
 and 𝑒𝑙

∗ = 𝑐𝑜𝑣(𝑔𝑙𝑡, 𝑘𝑡)/𝑣𝑎𝑟(𝑔𝑙𝑡) for 𝑙 =

1, … , 𝐿. 

• 𝜃0 can be transformed back into the original 𝜃 by putting: 

– 𝑑0 =
1

𝑑∗
, then �̃�𝑥 =

𝑏𝑥

𝑑0
⇒ 𝑏𝑥 =

�̃�𝑥

𝑑∗
; 

– 𝑐0 = −𝑐∗𝑑∗, then �̃�𝑥 = 𝑎𝑥 − 𝑏𝑥𝑐
0 ⇒ 𝑎𝑥 = �̃�𝑥 −

�̃�𝑥

𝑑∗
𝑐∗𝑑∗ = 𝑎�̃� − �̃�𝑥𝑐

∗; 

– 𝑒0 = −𝑒∗𝑑∗, then �̃�𝑙,𝑥 = 𝑐𝑙,𝑥 + 𝑒0𝑏𝑥 = 𝑐𝑙,𝑥 − 𝑒∗�̃�𝑥 ⇒ 𝑐𝑙,𝑥 = �̃�𝑙,𝑥 + 𝑒∗�̃�𝑥; 

– It follows that 𝑘�̃� = 𝑑0(𝑘𝑡 − ∑ 𝑒0𝑔𝑙,𝑡𝑙 + 𝑐0) =
1

𝑑∗
(𝑘𝑡 + 𝑑∗∑ 𝑒∗𝑔𝑙,𝑡𝑙 − 𝑐∗𝑑∗) ⇒ 𝑘𝑡 =

𝑑∗(𝑘�̃� − ∑ 𝑒∗𝑔𝑙,𝑡𝑙 + 𝑐∗). The parametrization is invariant to 𝑐∗, 𝑑∗ and 𝑒∗. 

• Consider 𝜃 ≠ �̃�. 

1. If 𝑎𝑥 ≠ �̃�𝑥 for some 𝑥, then 

1

𝑇
∑𝜇𝑥,𝑡

𝑇

𝑡=1

= 𝑎𝑥 ≠ �̃�𝑥 =
1

𝑇
∑𝜇𝑥,𝑡

𝑇

𝑡=1

, 

  since 𝑘𝑡 and 𝑔𝑙,𝑡 sum to 0 (the singular value decomposition is performed on the 
scaled matrix of the external variables). 

2. If ℎ𝑙,𝑥 ≠ ℎ̃𝑙,𝑥 for some 𝑙 and 𝑥, since all 𝑔𝑙,𝑡 are uncorrelated with each other, with 𝑘𝑡 
and sum to 0 over 𝑡, then 



∑𝑔𝑙,𝑡𝜇𝑥,𝑡

𝑇

𝑡=1

= ℎ𝑙,𝑥∑𝑔2
𝑙
, 𝑡

𝑇

𝑡=1

≠ ℎ̃𝑙,𝑥∑𝑔2
𝑙
, 𝑡

𝑇

𝑡=1

=∑𝑔𝑙,𝑡𝜇𝑥,𝑡

𝑇

𝑡=1

. 

3. If 𝑎𝑥 = �̃�𝑥 and ℎ𝑙,𝑥 = ℎ̃𝑙,𝑥 for all 𝑥 and 𝑙, but 𝑘𝑡 ≠ �̃�𝑡  for some 𝑡, since ∑ 𝑏𝑥
𝑁
𝑥=1 = 1, it 

holds that 

∑𝜇𝑥,𝑡

𝑁

𝑥=1
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𝑁
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+∑∑ℎ𝑙,𝑥𝑔𝑙,𝑡
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𝐿

𝑙=1
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𝑁

𝑥=1
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𝑇

𝑡=1

𝐿

𝑙=1

=∑𝜇𝑥,𝑡

𝑁

𝑥=1

.

 

4. If 𝑎𝑥 = �̃�𝑥, ℎ𝑙,𝑥 = ℎ̃𝑙,𝑥 for all 𝑥 and 𝑙, 𝑘𝑡 = �̃�𝑡 for all 𝑡, but 𝑏𝑥 ≠ �̃�𝑥 for some 𝑥, since 

𝑘 ≠ 0, there exists some 𝑡 for which 𝑘𝑡 = �̃�𝑡 ≠ 0. Then ∑ 𝑘𝑡
2𝑇

𝑡=1 = ∑ �̃�𝑡
2𝑇

𝑡=1 . However, 
since 𝑘𝑡 sum to 1 and are uncorrelated with 𝑔𝑙,𝑡, 

∑𝑘𝑡𝜇𝑥,𝑡

𝑇

𝑡=1

= 𝑏𝑥∑𝑘𝑡
2

𝑇

𝑡=1

≠ �̃�𝑥∑�̃�𝑡
2

𝑇

𝑡=1

=∑�̃�𝑡𝜇𝑥,𝑡

𝑇

𝑡=1

.

 

3.3 Variables 

The external variables chosen are meant to represent widely available and easily measurable 
variables that may have a plausible, although perhaps weak or indirect, effect on mortality. This 
is consistent with the overall focus on forecast improvement and scenario building. They are as 
follows (sources in parentheses): 

• average height of men aged 18 ((NCD-RisC) (2016) and (NCD-RisC) (2020) estimate, 
considered as non-stochastic quantities) 

• real GDP per capita (Feenstra et al. (2015) and PWT) 

• age-standardized share of men with raised blood pressure (Zhou et al. (2017), NCD-RisC 
estimate, considered as non-stochastic quantities) 

• fruit consumption per capita1 (FAO) 

 

1 Both fruit consumption and vegetable consumption data are sourced from FAO’s food balances 
survey (FBS). Since FBS underwent a change in methodology starting in 2014, there is a break in 
the series, which can be substantial. The old methodology and new methodology series have been 
reconciled by multiplying the new methodology (post-2014) series by a coefficient calculated as 
the ratio of average consumption in 2010-2013 and average consumption in 2014-2017. 



• vegetable consumption per capita (FAO) 

• daily supply of calories per person (FAO) 

• recorded alcohol consumption in liters per capita (15+) (WHO and Wine Economics 
Research Centre, University of Adelaide, Holmes and Anderson (2017)) 

• cigarette consumption (International Cigarette Consumption Database, Poirier et al. 
(2019)) 

• surface temperature anomaly in degrees Celsius (difference between average country 
temperature and 1961-1990 global average temperature) (HadCRUT4) 

• fossil fuel consumption per capita (BP Statistical Review of World Energy via Our World in 
Data) 

The preceding variables have both data available for a very high share of HMD countries and 
exhibit a high correlation with both age-specific death rates and the 𝑘𝑡 time index of the Lee-
Carter model. 

 

Figure 3.1: Correlations between mortality and three potential covariates, by age 

The graphs of correlations with mortality by age and country show distinctive patterns, 
displaying either correlations above 0.75 in absolute value for most ages or smaller correlations 
that are erratic across ages. An example with three variables in seven countries is shown in figure 
3.1. Correlations usually become much weaker or disappear entirely at ages above 90. In some 
cases, e.g. for the share of men that are obese, the correlation with mortality weakens markedly 
for ages from 20 to 40, around the mortality hump. In countries with a more complicated 
mortality history like Russia or with shorter time series like Slovenia, correlations for a given 
variable across ages are more likely to be erratic than in countries with longer time series and a 
simpler mortality history. 



The following table summarizes the correlation between yearly age-standardized mortality rates 
and external factors for 7 HMD countries. The age weights used are the WHO 2000-2025 
Standard Million (Ahmad et al., 2001). 

Table 3.1: Correlations between external variables and age-standardized mortality rates 

Variable Italy Slovenia Russia Netherlands Germany Japan USA 

Real GDP per 
capita 

-0.977 -0.946 -0.835 -0.967 -0.993 -0.954 -0.984 

Temperature 
anomalies 

-0.807 -0.330 -0.273 -0.778 -0.274 -0.453 -0.570 

Fossil fuel 
consumption 
per capita 

-0.489 0.321 -0.681 -0.278 0.932 -0.804 0.609 

Caloric supply 
per capita 

-0.612 -0.819 -0.686 -0.439 -0.869 0.022 -0.899 

Share of men 
with raised 
blood pressure 

0.945 0.990 0.681 0.989 0.994 0.989 0.962 

Average height 
of men 

-0.978 -0.978 -0.697 -0.743 -0.988 -0.753 0.077 

Fruit and 
vegetable 
consumption 
per capita 

-0.379 0.114 -0.630 -0.621 0.102 0.900 -0.416 

Alcohol 
consumption 
liters per capita 

0.959 0.578 0.285 0.890 0.977 -0.774 0.758 

Cigarette 
consumption 
per capita 

0.796 0.006 -0.093 0.836 0.879 0.834 0.987 

3.4 Stationarity of mortality time indices 

Having covariates that are correlated with mortality is not, by itself, enough to build a mortality 
model, since if any time series is a non-stationary process, the model estimates will be 
inconsistent and the correlations may be spurious. It is therefore necessary to investigate 
whether mortality rates - summarized by the time index 𝑘𝑡 of the Lee-Carter model - and external 
variables are stationary or not. In the latter case, cointegration analysis needs to be performed in 
order to ascertain whether the time series have a common stochastic trend. 

As in Seklecka et al. (2019), the Lee-Carter 𝑘𝑡 index for male mortality and all countries has been 
tested for stationarity with both the Phillips-Perron (Phillips and Perron, 1988) and KPSS 
(Kwiatkowski et al., 1992) tests, for which the null hypotheses are non-stationarity and 



stationarity, respectively. The version of the KPSS test for which the null is trend stationarity has 
been used. 

The two tests agree on non-stationarity of 𝑘𝑡 (by not rejecting the null hypothesis for the Phillips-
Perron test and by rejecting it for the KPSS test, in both cases at the 5% level) in 35 cases out of 
42 countries.  The tests disagree on the non-stationarity of 𝑘𝑡 for Chile, Croatia, Japan, Republic of 
Korea and Russia. The 𝑘𝑡 time index is stationary for Hong Kong and Taiwan. The detailed results 
are presented in table 3.2, with p-values>0.1 for the KPSS test presented as 0.1 and p-values<0.01 
presented as 0.01. 

Table 3.2: Phillips-Perron and KPSS tests on the Lee-Carter time index 

Country 
PP 

statistic 
PP 

p-value 
KPSS 

statistic 
KPSS 

p-value 

Australia -2.013 0.570 0.422 0.010 

Austria -1.371 0.831 0.444 0.010 

Belgium -1.801 0.656 0.435 0.010 

Bulgaria -2.581 0.339 0.216 0.010 

Belarus -0.721 0.963 0.244 0.010 

Canada -1.117 0.913 0.442 0.010 

Chile -2.650 0.323 0.129 0.082 

Croatia -3.539 0.059 0.131 0.078 

Hong Kong -4.389 0.010 0.072 0.100 

Switzerland -2.274 0.464 0.438 0.010 

Czechia -0.271 0.989 0.443 0.010 

East Germany -1.938 0.600 0.402 0.010 

West Germany -2.262 0.469 0.370 0.010 

Denmark -0.357 0.986 0.454 0.010 

Spain -3.269 0.084 0.292 0.010 

Estonia 0.038 0.990 0.348 0.010 

Finland -1.314 0.855 0.417 0.010 

France -1.870 0.628 0.439 0.010 

Greece -2.852 0.240 0.261 0.010 

Hungary -1.014 0.929 0.373 0.010 



Country 
PP 

statistic 
PP 

p-value 
KPSS 

statistic 
KPSS 

p-value 

Ireland -0.333 0.987 0.450 0.010 

Iceland -2.819 0.242 0.390 0.010 

Israel -3.030 0.174 0.169 0.031 

Italy -1.511 0.774 0.459 0.010 

Japan -3.770 0.025 0.383 0.010 

Republic of Korea -3.101 0.153 0.094 0.100 

Lithuania -2.557 0.349 0.263 0.010 

Luxembourg -2.899 0.211 0.360 0.010 

Latvia -0.309 0.987 0.330 0.010 

Netherlands 0.046 0.990 0.441 0.010 

Norway 0.630 0.990 0.458 0.010 

New Zealand -1.652 0.717 0.461 0.010 

Poland -0.374 0.984 0.376 0.010 

Portugal -2.209 0.490 0.400 0.010 

Russia -1.301 0.856 0.135 0.070 

Slovakia 0.676 0.990 0.368 0.010 

Slovenia -1.754 0.669 0.211 0.012 

Sweden -0.869 0.951 0.469 0.010 

Taiwan -3.594 0.043 0.132 0.075 

Ukraine -1.405 0.814 0.152 0.045 

United Kingdom -1.927 0.605 0.436 0.010 

USA -1.365 0.834 0.284 0.010 

3.5 Structural breaks in mortality and covariates 

Following Boonen and Li (2017) and Berkum et al. (2016), the possible presence of structural 
breaks has been investigated. While in Boonen and Li (2017) structural breaks are only used to 
calibrate forecasts, a non-stationary series may instead be trend stationary with structural 
breaks (Perron, 1989), which may alleviate issues with variables who show a high order of 
integration. Moreover, the presence of a common structural break in both mortality series and an 



external covariate, with a similar trend for the two variables both before and after the break, 
would reinforce the credibility of a link between them. 

The variables considered were the 𝑘𝑡 Lee-Carter mortality index and the stochastic covariates2: 
logarithm of real GDP, temperature anomalies, fossil fuel consumption, caloric supply, fruit and 
vegetable consumption, alcohol consumption, cigarette consumption. 

The methods to test for structural change are the generalized fluctuation tests, described by 
Zeileis et al. (2010) and implemented in the R package strucchange. Recursive residuals have 
been used to analyze both cumulative sums of residuals (CUSUM processes) and moving sums of 
residuals (MOSUM processes). For each time series, a linear time trend is estimated and then 
residuals are calculated. The series is deemed to have at least a structural break if the null 
hypothesis of no break is rejected by the structural change test with 𝛼 = 0.05 for at least one of 
the CUSUM and MOSUM processes. The optimal break points are then estimated by using the 
algorithm of Bai and Perron (2003), with up to 1 break point identified per series. 

Out of 42 countries, 35 have at least one break point in either the 𝑘𝑡 Lee-Carter time index or in a 
covariate. Belgium, Hong Kong, Israel, Republic of Korea, Luxembourg, New Zealand and Taiwan 
show no breakpoints. More specifically, 21 countries have at least one structural break in the 𝑘𝑡 
index. Temperature anomalies show a structural break in 3 countries, fossil fuel consumption in 
11 countries, fruit and vegetable consumption in 13 countries, while the other covariates have a 
structural break in between 16 to 20 countries.  

For each of the 21 structural breaks in the time index 𝑘𝑡, it has been checked whether a covariate 
had a structural break in the same or in the preceding year. Fossil fuel consumption has a 
concurrent or immediately preceding break point in 2 cases, same as cigarette consumption per 
capita, followed by logarithm of real GDP, caloric supply, alcohol consumption and fruit and 
vegetable consumption with one case. 

To sum up, both the mortality index 𝑘𝑡 and the external variables are often non-stationary and 
prone to having structural breaks even in relatively short time series (40 years or less). It does 
not appear, though, that breaks in 𝑘𝑡 are systematically preceded or followed by breaks in one or 
more of the external variables, hence there is no evidence that a structural break in a variable 
causes a break in 𝑘𝑡 or vice versa. 

Additionally, to check whether the relationship between mortality and the other variables is 
stable over time, it has been investigated whether there is a structural break in the series of the 
residuals of the time index 𝑘𝑡 regressed on the stochastic external variables. The only country to 
show such a break is East Germany, with a break estimated in 1996. When regressed on all 
variables, including the non-stochastic share of men with raised blood pressure and male height 
at age 18, Spain shows a structural break around 1985 and Poland in 1988. Except these three 
countries, the relationship between te mortality index and the external variables is stable over 
time. 

 

2 As mentioned in section 3.3, average height at age 18 and share of men with raised blood 
pressure are modeled quantities and are therefore considered non-stochastic. 



3.6 Integration of covariates 

 

Figure 3.2: Orders of integration for all countries by variable 

It has been shown that both the time index 𝑘𝑡 and the external variables are non-stationary in 
most cases. In order to be able to model their long-term relationship, non-stationary variables 
need to be cointegrated and a prerequisite for cointegration is that the series are I(1). To 
investigate whether this is the case, the order of integration of all variables for all countries has 
been explored with both the Phillips-Perron and the KPSS tests (both at 𝛼 = 0.05), with the 
following procedure: 

• Run both the Phillips-Perron test and the KPSS test on the series; 

• If both tests agree on non-stationarity (that is, the Phillips-Perron does not reject the null 
and the KPSS test rejects the null), differentiate the series and repeat the procedure on the 
differentiated series; 

• If both tests disagree with each other (i.e. they both fail to reject the null), for illustrative 
purposes only add 0.6 to the order of integration if the Phillips-Perron test points to non-
stationarity and 0.4 if the KPSS test points at non-stationarity. 

The results are presented in figure 3.2. Temperature anomalies are mostly stationary, with 5 
countries non-stationary according to the Phillips-Perron test only and 1 country non-stationary 
according to the KPSS test only. The other variables are generally non-stationary, with multiple 
cases of discordance between the PP and KPSS tests about whether a series is I(1) or I(2). Alcohol 
consumption in the Republic of Korea, which has a short time series, is I(3) according to the 
Phillips-Perron test and I(0) according to the KPSS test, while for real GDP in Croatia is I(3) for 
the Phillips-Perron test and I(1) for the KPSS test.  The procedure has been repeated considering 
structural breaks as well for series that had an order of integration of 1 or above. For series that 
had an order of integration below 1, structural breaks were ignored. Due to the shortness of the 



series, considering the structural break usually results in the null not being rejected for both the 
Phillips-Perron and the KPSS tests. 

All in all, temperature anomalies are mostly stationary and the other variables are non-
stationary. No series is unambiguously I(2) or higher, though for a sizable number of series the 
tests disagree whether they are I(1) or I(2). When considering structural breaks, the series are 
either I(1) or are non-stationary according to the Phillips-Perron test and stationary according to 
the KPSS test. Therefore it cannot be argued that the series are stationary with structural breaks. 

3.7 Cointegration analysis 

As already outlined, most of the time series considered are I(1). Following the methodology 
outlined in Seklecka et al. (2019), the presence of cointegration relationships in the data has been 
explored. The procedure by Johansen (1991) has been applied to all countries with at least 20 
years of data (27 countries), assuming a linear trend in cointegration. The results are presented 
in table 3.3. With the exception of Denmark and Finland, all countries have at least one 
cointegration relationship with a p-value under 5% and 23 countries (85%) have at least one 
cointegration relationship with a p-value under 1%. In both Denmark and Finland the p-value is 
just above 5%.  

Table 3.3: Cointegration relationships between the Lee-Carter time index and external variables 

Country 
Number of cointegration 

relationships 
 at 99% significance 

Number of cointegration 
relationships 

at 95% significance 

Australia 1 3 

Austria 1 1 

Bulgaria 0 2 

Canada 1 2 

Chile 6 7 

Switzerland 1 1 

Czechia 7 8 

East Germany 1 1 

West Germany 1 1 

Denmark 0 0 

Spain 2 3 

Finland 0 0 

France 1 1 

Greece 2 3 



Country 
Number of cointegration 

relationships 
 at 99% significance 

Number of cointegration 
relationships 

at 95% significance 

Hungary 2 3 

Ireland 1 1 

Iceland 1 3 

Italy 2 3 

Japan 2 2 

Netherlands 2 3 

Norway 2 3 

Poland 0 3 

Portugal 1 1 

Slovakia 7 7 

Sweden 1 2 

United Kingdom 1 1 

USA 3 3 

4 Results 

The SEV model is applied to male mortality between the ages of 40 to 90, with a maximum of two 
principal components and a threshold of 15% of variance explained by the principal component 
in order for it to be included in the model: a brief discussion of alternative specifications is 
presented in section 4.4. The overall performance of the SEV model for all countries analyzed is 
discussed first, using several goodness of fit measures comprising both absolute and percentage 
errors. The distribution of age at death is concentrated on higher ages, therefore absolute 
residuals will be more influenced by the fit at old ages, while percentage residuals are more 
sensitive at younger ages, when the number of deaths is small and a small residual in absolute 
terms can lead to large errors in percentage terms. Subsequently, forecasting performance is 
assessed for a variety of jump-off years. Finally, the results for a few countries are discussed 
individually, with a specific focus on whether the model fit captures the mortality trend 
adequately by analyzing the model residuals, again both in raw number of deaths and in 
percentage terms. 

4.1 Goodness of fit and model comparison 

The fit of the SEV models is compared to the Lee-Carter model and to the Niu-Melenberg model, 
estimated on the same set of years and ages, using the Mean Absolute Deviation (MAD), Mean 



Absolute Percentage Error (MAPE) and the Bayesian Information Criterion (BIC). They are 

defined as follows, with the predicted deaths �̂�𝑥,𝑡 = 𝑒𝑥𝑝{𝑎𝑥 + ∑ 𝑏𝑗,𝑥𝑘𝑗,𝑡
𝐽
𝑗=1 + ∑ 𝑐𝑙,𝑥𝑑𝑙,𝑥𝑔𝑙,𝑡

𝐿
𝑙=1 }𝐸𝑥,𝑡: 

𝑀𝐴𝐷 =
∑ ∑ |𝐷𝑥,𝑡 − �̂�𝑥,𝑡|𝑡𝑥

𝑋𝑇
 

𝑀𝐴𝑃𝐸 =

∑ ∑
|𝐷𝑥,𝑡 − �̂�𝑥,𝑡|

𝐷𝑥,𝑡𝑡𝑥

𝑋𝑇
 

𝐵𝐼𝐶 = 𝑚 𝑙𝑜𝑔𝑀 − 2𝑙𝑜𝑔�̂�, 

with 𝑋 being the number of ages, 𝑇 the number of years, 𝑚 the number of parameters, 𝑀 the 
number of observations and �̂� the likelihood in the model. A lower value of the BIC indicates a 
better fit. 

The results are presented in figure 4.1 and 4.1. The SEV models outperform both the Lee-Carter 
and the Niu-Melenberg models in terms of both MAD and MAPE: since the Niu-Melenberg fits 
better than the Lee-Carter, only the comparison with the Niu-Melenberg is shown. In terms of 
BIC, the SEV models has either a lower BIC or a very close BIC to both the Lee-Carter and Niu-
Melenberg models, outperforming the Lee-Carter model for 18 countries out of 37 and the Niu-
Melenberg model for 12 countries out of 37. The proposed single-population models therefore 
improve the fit beyond their cost in additional model complexity for between a third and half of 
the countries examined, while in the other countries the improved fit comes at a negligible added 
complexity. 

 

Figure 4.1: Bayesian Information Criterion (BIC) for SEV, Niu-Melenberg and Lee-Carter models 

Table 4.1: Mean absolute deviation (MAD), mean absolute percentage error (MAPE), Bayesian 
Information Criterion (BIC) and number of principal components for single-population models and 



equivalent Niu-Melenberg models. Countries where the single-population model outperforms the 
Lee-Carter model are in bold. 

Country MAD MAPE BIC N. PC 
MAD 
Niu-

Melenberg 

MAPE 
Niu-

Melenberg 

BIC 
Niu-

Melenberg 

Australia 28.793 3.537 20,293 2 34.825 4.108 20,934 

Austria 23.353 4.190 21,217 2 23.140 4.194 20,821 

Belarus 34.242 3.053 10,543 2 35.036 3.117 10,269 

Belgium 20.751 3.026 8,544 2 22.746 3.262 8,320 

Bulgaria 38.944 4.096 24,816 2 43.727 4.527 25,750 

Canada 36.700 2.629 20,615 2 51.607 3.761 22,687 

Chile 28.053 3.993 13,360 2 29.247 4.128 13,121 

Croatia 16.498 4.443 7,669 2 17.186 4.510 7,407 

Czechia 26.058 3.153 12,436 2 27.136 3.270 12,217 

Denmark 18.213 4.584 20,102 2 18.484 4.725 19,801 

East 
Germany 

52.937 4.500 27,072 2 53.026 4.422 26,614 

Estonia 8.477 6.237 8,791 2 8.864 6.491 8,501 

Finland 18.537 5.287 20,434 2 19.997 5.660 20,404 

France 93.696 2.602 29,613 2 94.036 2.715 29,456 

Greece 29.116 3.995 19,020 2 29.944 4.130 18,772 

Hungary 44.644 3.868 25,360 2 50.506 4.298 26,233 

Iceland 2.557  Inf 12,142 2 2.617  Inf 11,845 

Ireland 13.309 6.077 18,763 2 13.956 6.688 18,687 

Italy 97.001 2.400 28,763 2 108.931 2.644 29,705 

Japan 176.346 2.493 34,846 2 189.605 2.836 36,546 

Latvia 10.934 4.533 9,363 2 11.337 4.716 9,063 

Lithuania 14.445 4.274 9,854 2 14.853 4.401 9,580 

Netherlands 28.009 3.136 21,873 2 32.237 3.718 22,315 

Norway 14.298 5.188 18,977 2 15.198 5.623 18,862 

Poland 82.947 2.644 29,054 2 84.480 2.732 29,026 



Country MAD MAPE BIC N. PC 
MAD 
Niu-

Melenberg 

MAPE 
Niu-

Melenberg 

BIC 
Niu-

Melenberg 

Portugal 26.201 3.730 21,839 2 26.846 3.752 21,536 

Republic of 
Korea 

51.402 2.305 8,412 2 54.115 2.390 8,169 

Russia 450.430 2.518 33,633 2 478.080 2.739 35,484 

Slovakia 17.663 4.034 11,642 2 18.368 4.189 11,376 

Slovenia 9.292 6.565 8,533 2 9.740 6.764 8,258 

Spain 52.688 2.159 24,704 2 55.366 2.620 25,252 

Sweden 20.364 3.639 20,451 2 20.758 3.786 20,165 

Switzerland 17.157 4.396 19,892 2 17.666 4.519 19,635 

Ukraine 154.880 2.591 17,090 2 158.623 2.670 17,130 

United 
Kingdom 

113.557 2.996 32,968 2 120.853 3.180 33,673 

USA 276.788 1.819 41,230 2 318.170 2.205 46,994 

West 
Germany 

136.440 2.807 35,219 2 133.902 2.642 34,393 

4.2 Forecasting performance 

Even more important than fitting historical data is the model’s ability to forecast future mortality 
rates. The forecasting performance of the single-population models is evaluated on historical 
data by estimating the model up to a jump-off year, forecasting the remaining years until the end 
of the sample and then comparing the forecasts with the actual mortality rates. The metric used 
is the relative root mean forecast square error (RMFSE), as in Boonen and Li (2017). 

Given a jump-off year �̂�, a predicted logarithm of mortality rate 𝑙𝑜𝑔 𝑚𝑥,𝑖,𝑡
̂  for country 𝑖, age 𝑥 and 

year 𝑡, and 𝑈𝑖 being the end of sample year for population 𝑖, the RMFSE is: 

𝑅𝑀𝐹𝑆𝐸𝑀(𝑖, �̂�) = √
1

𝑁(𝑈𝑖 − �̂�)
∑ ∑

(𝑙𝑜𝑔 𝑚𝑖,𝑥,𝑢 − 𝑙𝑜𝑔 𝑚𝑥,𝑖,𝑡
̂ )

2

|𝑙𝑜𝑔 𝑚𝑖,𝑥,𝑢|

𝑁

𝑥=0

𝑈𝑖

𝑢=𝑢+1

 

The period term 𝑘𝑡 has been modeled as a random walk with drift. The models are evaluated 
with jump-off years between 2000 and 2010, in order to compare different forecast horizons. The 
results are presented for all countries in table 4.2 for years 2000, 2005 and 2010. For the whole 
span of jump-off years 2000-2010 the results are presented in figure 4.2 for a group of low-



mortality countries with similar mortality paths and in figure 4.3 for a group of similar high-
mortality countries. 

The forecasting performance has been tested for a given jump-off year if the model had at least 
10 years of data up to the jump-off year included, if data was available for at least one year after 
the jump-off year and if the country is big enough to have at least 5.000 deaths per year across all 
ages considered. 

Table 4.2: Ratio between root mean square forecast squared error (RMFSE) for single-population 
models and correspondent Niu-Melenberg (NM) models, jump-off year 2000, 2005 and 2010, only 
countries with at least 9 years of data up to jump-off year 

Country 
Model 
starting 
year 

Ratio RMFSE/ 
RMFSE NM 

2000 

Ratio RMFSE/ 
RMFSE NM 

2005 

Ratio RMFSE/ 
RMFSE NM 

2010 

Australia 1975 1.069 0.685  

Austria 1975 0.758 1.147 1.454 

Belarus 1997   1.188 

Belgium 2000   1.376 

Bulgaria 1975 0.758 0.752 1.192 

Canada 1975 1.129 0.544 0.613 

Chile 1992  0.521 0.855 

Croatia 2001   0.799 

Czechia 1993  0.849 1.299 

Denmark 1975 1.000 0.919 1.145 

East Germany 1975 0.856 0.981 0.998 

Estonia 1996  1.113 0.818 

Finland 1975 1.006 1.044 0.820 

France 1975 0.914 1.056 1.057 

Greece 1981 1.187 0.992 1.172 

Hungary 1975 1.050 1.607 1.006 

Ireland 1975 1.044 0.775 1.163 

Italy 1975 0.916 1.151 1.154 

Japan 1975 0.964 0.919 0.830 



Country 
Model 
starting 
year 

Ratio RMFSE/ 
RMFSE NM 

2000 

Ratio RMFSE/ 
RMFSE NM 

2005 

Ratio RMFSE/ 
RMFSE NM 

2010 

Latvia 1996  0.961 0.985 

Lithuania 1996  1.088 1.026 

Netherlands 1975 0.953 1.026 0.891 

Norway 1975 1.039 1.219 0.961 

Poland 1975 0.939 1.476 1.113 

Portugal 1975 1.520 2.217 1.509 

Russia 1996  0.531 1.493 

Slovakia 1993  0.893 1.216 

Slovenia 1997   0.810 

Spain 1975 1.257 0.862 1.933 

Sweden 1975 1.114 1.070 1.584 

Switzerland 1975 0.829 0.540 1.053 

Ukraine 1996  0.763 0.846 

United 
Kingdom 

1975 0.785 0.960 1.759 

USA 1975 1.240 1.350 1.350 

West Germany 1975 0.898 0.980 1.203 



 

Figure 4.2: Difference between RMFSE for the SEV model for for the Niu-Melenberg model, low 
mortality countries (SEV is performing better if the line is under the dashed line) 

For 12 countries out of 23 the ratio between the RMFSE of the SEV model and the Niu-Melenberg 
model is lower than 1, that is, the SEV model outperforms the Niu-Melenberg model in terms of 
RMFSE. For jump-off years 2005 and 2010 the countries outperforming the Niu-Melenberg 
model are 18 out of 31 and 12 out of 34, respectively. Overall, adding external variables beyond 
GDP improves the forecasting performance of the model for about half of the countries. 

The better performing model can vary from year to year. As shown in figure 4.2, the SEV model is 
generally outperforming the Niu-Melenberg model for Australia, Switzerland and Canada3, while 
the performance for France, Italy and Spain. Still, for all six countries there are years when the 
SEV model outperforms the Niu-Melenberg model and vice-versa. 

 

3 Covariate data is missing for Canada between 1999 and 2004, hence the last year with actual 
data is 1998 until 2005 



 

Figure 4.3: Difference between RMFSE for the SEV model for for the Niu-Melenberg model, high 
mortality countries (SEV is performing better if the line is under the dashed line) 

This is even more evident in figure 4.3: the SEV model decidedly outperforms the Niu-Melenberg 
model in Bulgaria and, to a lesser extent, Slovakia, while it underperforms in Hungary. For all 
three countries, though, there are years where the opposite is true. 

There is no clear relationship between the number of years used to train the model and the 
relative forecasting performance. The two countries with data starting in the 2000s (Belgium and 
Croatia) do not outperform the Niu-Melenberg model, but there are both countries with data 
starting in 1975 (the Netherlands) and countries with data from 1992 onwards (Russia) that 
outperform the Niu-Melenberg model for all applicable jump-off years. 



4.3 Individual countries 

4.3.1 Netherlands 

 

Figure 4.4: Netherlands, actual minus predicted deaths as % of actual deaths by age and year 

Figure 4.4 shows the residuals by age and calendar year as a percentage of total deaths. There are 
no systematic age errors, which would show as vertical lines, or systematic period errors, which 
would show as horizontal lines. The errors vary at random and the largest percentage errors are 
in the 40-45 age range, where the absolute number of deaths is smaller and a small error in 
absolute terms is magnified in percentage terms. There are hints of a small cohort effect 
(diagonal bands) for the WW2 cohorts, which is mostly gone after year 2000. 



 

Figure 4.5: Netherlands, actual minus predicted deaths by age and year 

The errors in absolute terms, shown in figure 4.5, show a similar pattern to the percentage 
errors. No significant structural patterns are visible and the occasional high residuals aren’t 
clustered together. 

4.3.2 Spain 

 

Figure 4.6: Spain, actual minus predicted deaths as % of actual deaths by age and year 



For Spain, the percentage difference between the actual and fitted deaths is between -15% and 
20%. The largest residuals in percentage terms are for the 40-50 age range around 1995. The 
timing and age range affected is consistent with the AIDS epidemic and the introduction of new 
therapies in the mid-90s: moreover, a version of the model comprising the age range 0-90 
evidenced a spike in male deaths aged 30-40 in the same years. While the AIDS epidemic has not 
been explicitly modeled for comparability across countries, it’s a component of mortality that 
could be straightforwardly added to the SEV model. There are no systematic age or period 
components visible. The residuals hint at a small cohort effects for those born during the Spanish 
Civil War. 

 

Figure 4.7: Spain, actual minus predicted deaths by age and year 

The cohort effect due to the Spanish Civil war remains visible when residuals are calculated as 
difference in the number of deaths. The range of the residuals is [-300, 300], with the model 
predicting a higher number of deaths for ages 80+ in the mid-nineties. 



4.3.3 Poland 

 

Figure 4.8: Poland, actual minus predicted deaths as % of actual deaths by age and year 

The range of percentage residuals for Poland is from -25% to 15%, again comparable with the 
other countries. The residuals show two prominent cohort effects: one for the cohorts born 
around 1920 (Polish-Soviet war), a weaker one for the cohorts born during World War 1. No 
systematic age or period effect is visible, but the model predicts a larger number of deaths in 
1975-77 around age 55, the cohorts for which the cohort effects are most prominent in the 
subsequent years. 



 

Figure 4.9: Poland, actual minus predicted deaths by age and year 

The residual deaths range from -500 to 600 per year, with, again, the biggest errors related to the 
1920 and WW1 cohorts. The graph also hints at a weak cohort effect for those born during WW2 
and slightly overestimates deaths at ages 70 and higher in years 1988-1992, underestimating the 
deaths in the same age range around year 2000. 

4.3.4 Sweden 

 

Figure 4.10: Sweden, actual minus predicted deaths as % of actual deaths by age and year 



Sweden is the smallest country of the five considered individually and therefore the percentage 
residuals show the largest range, from -45% to 25%. The largest residuals in percentage occur 
for ages between 40 and 50 and the residuals appear entirely random, without any age, period or 
cohort effect. 

 

Figure 4.11: Sweden, actual minus predicted deaths by age and year 

The absence of any pattern applies to the residual deaths as well. There are two large residuals in 
1984 (170 for men aged 76 and -152 for men aged 86) and other smaller residuals scattered 
without a noticeable pattern. 



4.3.5 USA 

 

Figure 4.12: USA, actual minus predicted deaths as % of actual deaths by age and year 

The United States are the largest country and hence the residuals in percentage terms are the 
smallest, ranging from -14% to 14%. Large positive residuals are present in the age range 40-50 
up to 1995: as with Spain, a timing and age range consistent with the AIDS epidemic. There are 
several diagonal lines that hint at weak cohort effects. 

 

Figure 4.13: USA, actual minus predicted deaths by age and year 



Examining the difference in actual and predicted deaths highlights the cohort effects, with the 
most prominent being the 1918-1919 cohorts. In 2014, the last year of data, the model noticeably 
underestimates deaths in the 60-65 age range and overestimates them over 75 years of age. 

4.3.6 Age-period term 

 

Figure 4.14: Age loadings 𝑏𝑥 of the country-specific residual age-period term 𝑏𝑥𝑘𝑡 in five selected 
countries 

The age-period term 𝑏𝑥𝑘𝑡 fitted to the data should capture residual trends not explained by the 
external variables. In an ideal situation, these terms will represent country-specific 
idiosyncrasies and both the age loadings 𝑏𝑥 and the period terms 𝑘𝑡 will differ from one country 
to another. Conversely, similar age loadings and period terms across all countries would point to 
an omitted variable with a systematic effect on death rates. The age loadings for five selected 
countries, shown in figure 4.14, present both commonalities and differences. Poland has slightly 
higher age loadings at younger ages (40-50), which then decline uniformly towards older ages, 
thus representing middle-aged mortality. The loadings in other countries decrease from age 40 to 
a trough between ages 45 and 50, with loadings climbing back up, peaking and then declining to 
age 90. The Netherlands and Spain exhibit a clear peak around age 72 and 75, respectively, while 
Sweden and the USA show more of a plateau than a simple peak. The shapes of the loadings 
across countries differs to the point that they eschew a simple, common interpretation. Given the 
differences in age loadings, the period term 𝑘𝑡, shown in figure 4.15, unsurprisingly shows no 
single common trend, although with some large fluctuations (Poland in 1982) and broken trends 
(Netherlands 1975-1993-2010). 



 

Figure 4.15: Period term 𝑘𝑡 in five selected countries 

4.3.7 Composition of external factors 
Table 4.3: Loadings summary for first and second principal component (PC) used in single-
population models 

Variable 
1. PC, 
mean 

1. PC, st. 
dev. 

1. PC, % 
positive 

2. PC, 
mean 

2. PC, st. 
dev. 

2. PC, % 
positive 

Real GDP 0.394 0.021 100.0 -0.031 0.148 27.0 

Temperature 
anomalies 

0.241 0.096 94.6 -0.014 0.286 48.6 

Fossil fuel 
consumption 

0.018 0.325 54.1 -0.048 0.413 48.6 

Caloric supply 0.236 0.201 91.9 -0.028 0.420 48.6 

Men with raised 
blood pressure 

-0.372 0.128 2.7 0.033 0.169 54.1 

Male height at age 
18 

0.338 0.135 94.6 -0.037 0.297 45.9 

Fruit and vegetable 
consumption 

0.143 0.271 73.0 0.001 0.405 43.2 

Alcohol consumption -0.129 0.308 32.4 -0.011 0.352 56.8 

Cigarette 
consumption 

-0.199 0.232 21.6 -0.063 0.401 43.2 



While the 𝑂 external variables ℎ𝑜,𝑡  used for the model are the same for all countries, the external 

factors 𝑔𝑙,𝑡 actually used in the fitting process are linear combinations of the ℎ𝑜,𝑡, obtained 
through singular value decomposition. The loadings of the principal components express the 
relative importance of the variables for each principal component and their analysis highlights 
whether variables’ importance is constant or differs across countries. 

As shown in table 4.3, the first principal component has a positive loading for real GDP that is 
quite stable across countries, as can be seen by the low standard deviation of the loading. 
Likewise, temperature anomalies have a positive loading and a low standard deviation, same for 
male height at age 18. These three variables all have a positive impact on mortality reductions, 
while the share of males with raised blood pressure has the opposite impact and has 
consequently a negative loading. 

Table 4.4: Loadings of the second principal component used in single-population models by country 

Country 
Real 
GDP 

Temp. 
anom. 

Fossil 
fuel 

cons. 

Caloric 
supply 

Men 
with 

raised 
blood 
press. 

Male 
height 
at age 

18 

Fruit 
and 

veget. 
cons. 

Alcohol 
cons. 

Cigarette 
cons. 

Australia -0.042 0.014 0.122 -0.932 0.053 0.091 -0.087 -0.309 -0.015 

Austria -0.031 0.148 -0.326 -0.187 -0.144 -0.771 0.440 -0.064 -0.150 

Belgium 0.223 -0.486 0.179 -0.610 -0.114 0.094 0.529 -0.073 -0.062 

Bulgaria 0.428 0.196 0.192 0.233 -0.210 -0.108 -0.228 0.603 -0.465 

Belarus -0.023 0.804 -0.056 -0.363 -0.010 -0.022 0.063 0.335 -0.318 

Canada -0.008 -0.336 -0.862 -0.092 -0.092 0.120 0.019 -0.307 -0.129 

Chile -0.189 0.246 0.184 0.106 0.025 0.063 0.008 -0.773 0.507 

Croatia -0.339 0.136 -0.488 -0.545 0.447 -0.082 -0.088 0.233 -0.251 

Switzerland -0.138 0.147 0.329 -0.813 0.048 0.037 -0.389 -0.154 0.109 

Czechia -0.175 0.229 -0.300 -0.529 0.126 -0.274 -0.374 -0.097 -0.554 

East 
Germany 

-0.054 -0.025 0.160 0.349 0.081 0.077 0.900 0.025 0.164 

West 
Germany 

-0.054 -0.025 0.160 0.349 0.081 0.077 0.900 0.025 0.164 

Denmark -0.018 -0.344 0.405 0.374 -0.049 0.335 -0.107 0.440 -0.508 

Spain 0.009 -0.103 -0.247 -0.508 -0.114 -0.113 -0.595 0.033 -0.538 

Estonia -0.032 -0.496 0.171 0.013 0.006 0.145 -0.026 -0.185 -0.817 

Finland -0.010 0.322 -0.774 0.388 -0.053 -0.306 0.053 -0.042 0.214 



Country 
Real 
GDP 

Temp. 
anom. 

Fossil 
fuel 

cons. 

Caloric 
supply 

Men 
with 

raised 
blood 
press. 

Male 
height 
at age 

18 

Fruit 
and 

veget. 
cons. 

Alcohol 
cons. 

Cigarette 
cons. 

France -0.234 0.110 -0.090 0.746 0.238 0.006 0.115 -0.147 0.526 

Greece -0.109 0.132 -0.282 -0.566 -0.106 -0.151 -0.545 -0.148 -0.466 

Hungary 0.135 0.100 0.286 0.332 -0.117 0.074 0.857 0.116 -0.118 

Ireland -0.051 -0.398 -0.426 -0.191 -0.142 -0.012 0.255 -0.686 -0.256 

Iceland -0.161 -0.017 -0.771 0.305 0.160 -0.499 -0.088 0.062 0.027 

Italy -0.025 -0.216 0.560 0.335 0.305 -0.043 0.520 0.067 0.397 

Japan 0.025 -0.127 -0.041 0.716 0.120 0.420 0.126 0.301 0.414 

Republic of 
Korea 

-0.132 -0.748 0.058 0.035 0.063 -0.110 -0.508 0.359 -0.125 

Lithuania -0.062 0.417 -0.335 0.229 -0.040 -0.190 0.650 0.055 -0.440 

Latvia 0.171 0.100 -0.087 -0.170 -0.037 0.275 -0.336 0.034 -0.856 

Netherlands 0.123 0.105 0.919 0.116 0.061 -0.141 -0.068 0.127 0.269 

Norway -0.107 -0.207 0.337 -0.069 0.042 0.508 -0.114 -0.416 0.617 

Poland 0.227 -0.085 0.155 0.544 -0.171 -0.133 -0.103 0.677 -0.326 

Portugal -0.014 -0.061 0.237 0.218 0.639 0.105 0.198 0.189 0.631 

Russia -0.228 0.028 -0.144 -0.068 0.085 -0.670 -0.073 0.577 0.356 

Slovakia -0.199 0.155 0.033 -0.673 0.073 -0.054 -0.638 -0.234 -0.115 

Slovenia -0.092 0.283 -0.609 -0.093 -0.038 0.029 -0.389 0.130 -0.601 

Sweden -0.090 -0.160 -0.025 -0.189 0.129 0.681 -0.269 -0.609 0.075 

Ukraine 0.057 -0.209 0.703 0.377 0.023 -0.145 -0.172 0.037 0.514 

United 
Kingdom 

-0.067 -0.150 -0.566 -0.168 -0.069 -0.038 0.001 -0.787 0.009 

USA 0.150 -0.007 -0.547 -0.036 -0.093 -0.651 -0.399 0.185 -0.225 

The variable loadings for the second principal component are more varied, with most variables 
more or less equally split between positive and negative loadings. A more detailed look at the 
loadings in table 4.4 reveals how the second principal component usually has one or two (in the 
case of Spain, three) variables with a high loading, over 0.5 in absolute value. Cigarette 
consumption and caloric supply have a loading over 0.5 in absolute value for the second principal 



component for 11 countries, then fruit and vegetable consumption (10 countries), fossil fuel 
consumption (9), alcohol consumption (7), male height at age 18 (5), temperature anomalies (2), 
share of men with raised blood pressure (1), while real GDP per capita never has a loading over 
0.43 in absolute value. 

4.4 Robustness checks and alternative specifications 

A number of alternative specifications of the SEV model has been tested, as well as various 
covariate sets. 

While the number of external variables has no direct effect on model complexity, since the 
external factors are principal components of the SVD of the external variables matrix, it has been 
tested nevertheless whether excluding certain variables improves model fit by reducing noise. 
The tests have been carried out for models covering the 40-90 age range, with a maximum of two 
principal components and an additional age-period term. The tested sets are presented in table 
4.5. No set is clearly superior in terms of MAD and MAPE, while considering BIC the full variable 
set performs best, minimizing the BIC for 11 countries and being the second best choice for 4 
more countries. It is therefore possible to further improve on the results presented in section 4.1 
by choosing a different subset of covariates, as the full variable set was chosen for all countries 
for comparability. 

Table 4.5: Alternative variable sets to the base set and number of countries for which the set 
maximizes MAD and MAPE and minimizes BIC 

Variable 
set 

Excluded variables 

Countries 
with 

maximum 
MAD 

Countries 
with 

maximum 
MAPE 

Countries 
with 

minimum 
BIC 

1 None 5 6 11 

2 Temperature anomalies 3 2 4 

3 
Temperature anomalies and non-stochastic 
variables (blood pressure, height) 

4 4 2 

4 Temperature anomalies and height 4 6 5 

5 Temperature anomalies and blood pressure 2 0 0 

6 
Temperature anomalies, blood pressure and 
fruit/vegetable consumption 

4 6 1 

7 
Temperature anomalies, blood pressure and 
fossil fuel consumption 

3 4 2 

8 
Temperature anomalies and alcohol 
consumption 

6 3 8 

9 
Temperature anomalies and cigarette 
consumption 

6 5 4 

Base set of variables: real GDP per capita, temperature anomalies, fossil fuel consumption, caloric 



Variable 
set 

Excluded variables 

Countries 
with 

maximum 
MAD 

Countries 
with 

maximum 
MAPE 

Countries 
with 

minimum 
BIC 

supply, share of men with raised blood pressure, average height at age 18, fruit and vegetable 
consumption per capita, alcohol consumption per capita, cigarette consumption per capita. MAPE 
not finite for Iceland. 

For both the 0-90 and 40-90 age ranges it has been investigated whether the inclusion of an age-
period term and different limitations on the number of external factors can improve model fit. 
These tests have been carried out with the full covariate set and the results are presented in table 
4.6. While more relaxed criteria on inclusion of principal components of external variables 
increase fit, the BIC suggests more stringent limits. For the 0-90 age range, BIC is minimized for 
most countries with the inclusion of 3 principal components, while for 6 countries the BIC is 
minimized with the inclusion of a fourth principal component. For the 40-90 age range, two to 
three principal components are generally sufficient and additional components add little value. 
An age-period term markedly improves model fit in all cases. Ultimately, the 40-90 age range has 
been chosen due to an overall better forecasting performance compared to the Niu-Melenberg 
model, with the RMFSE ratio being lower than 1 for a higher number of countries at all jump-off 
years tested. 

Model specification has a larger effect on the BIC than the choice of covariates: while testing 
alternative specifications, the BIC would vary substantially in terms of countries outperforming 
the corresponding Lee-Carter model, while as far as the choice of variables is concerned, once a 
model outperformed the Lee-Carter model, it would continue doing so under all sets of variables 
tested for almost all countries. 

Table 4.6: Parameter sets and number of countries for which the set maximizes MAD and MAPE and 
minimizes BIC 

Par. 
set 

Age 
range 

Max 
n. PC 

Variance 
threshold 

Age-
period 
term 

Countries 
with 

maximum 
MAD 

Countries 
with 

maximum 
MAPE 

Countries 
with 

minimum 
BIC 

A 0-90 5 0.10 Yes 36 25 13 

B 0-90 3 0.10 Yes 1 0 22 

C 0-90 5 0.10 No 0 0 2 

D 40-90 5 0.10 Yes 37 36 4 

E 40-90 5 0.10 No 0 0 1 

F 40-90 3 0.10 Yes 0 0 6 

G 40-90 3 0.15 Yes 0 0 11 

H 40-90 2 0.15 Yes 0 0 15 



Par. 
set 

Age 
range 

Max 
n. PC 

Variance 
threshold 

Age-
period 
term 

Countries 
with 

maximum 
MAD 

Countries 
with 

maximum 
MAPE 

Countries 
with 

minimum 
BIC 

MAPE not finite for twelve countries in age range 0-90, for Iceland in age range 40-90. 7 
out of 13 countries have 3 principal components above the variance threshold and their 
BIC is therefore the same as for parameter set B. 

4.4.1 Cohort terms 
Table 4.7: Mean absolute deviation (MAD), mean absolute percentage error (MAPE), Bayesian 
Information Criterion (BIC) for single-population models with cohort term and no age-period term 

Country MAD MAPE BIC 

Spain 81.653 1.874 27,110 

Poland 100.395 3.369 33,432 

USA 281.718 1.653 39,709 

As shown in the previous sections, some countries exhibit cohort effects, therefore it’s sensible to 
investigate whether including a cohort term would improve the fit. Unfortunately, when fitting 
the model with both an age-period term and a cohort term, an infinite deviance is produced, 
preventing a successful estimate of the parameters, hence the inclusion of a cohort term requires 
the omission of the age-period term. 

A single-population model with a cohort term and no age-period term has been estimated for 
three countries where model residuals suggested a cohort effect: Spain, Poland and the USA, the 
results are presented in table 4.7. The inclusion of a cohort term yields mixed results for the USA, 
where there is a decrease in MAPE and BIC, but not in MAD, while for Spain and Poland the fit is 
noticeably worse. 

4.4.2 Stationarity of the age-period term 

The age-period term 𝑏𝑥𝑘𝑡 fits trends not captured by the external factors 𝑔𝑙,𝑡. But it’s possible 
that the age-period term captures temporary idiosyncrasies, which vanish in the long term. To 
this end, the stationarity of the 𝑘𝑡 terms has been investigated with the Phillips-Perron test. For 
11 countries, the period term 𝑘𝑡 is stationary (with a p-value less than 0.05) and therefore for 
these countries there are no systematic trends not captured by the external factors 𝑔𝑙,𝑡. 

5 Discussion 

The effect of economic development, environmental and lifestyle factors on mortality is well 
documented. Prosperity, living in a clean environment and having healthy habits all contribute to 
a long life. Mortality and these factors are correlated and cointegration analysis has shown that 
this relationship is stable over the long run even if the individual series are usually non-
stationary and also include structural breaks. Hence, external variables can be credibly 



incorporated in a stochastic mortality model. On one hand, this can improve fit and forecasting 
performance compared to the Lee-Carter model and to the Niu-Melenberg model which only 
includes GDP. In addition to improving model performance, including a wider set of variables can 
also improve the interpretability of stochastic mortality models and offer insights on the relative 
importance of different factors and how they vary across countries. This makes it easier to 
elaborate scenarios considering the trade-offs, i.e. between economic growth and environmental 
protection. 

The main goal of this study was to build a model that could be useful in scenario building and 
policy planning. To this end, expanding the scope of variables included in the model is crucial. If 
we don’t model a variable, it is ignored: the optimal policy to reduce mortality based on a model 
which only incorporates GDP is to maximize GDP, no matter the effect on environment and on 
public health, which is clearly nonsensical. 

Mortality is a complex phenomenon and stochastic mortality modeling is in a constant trade-off 
between simple, parsimonious models and more comprehensive models that capture the 
multifaceted nature of mortality. The complexity of mortality is reflected in the fact that in none 
of the analysed countries the relationship between mortality and the other variables could be 
described by a single principal component. To put it otherwise, economic prosperity is not 
enough. Moreover, while GDP features prominently in the first principal component in all 
countries, the composition of the second principal component is much more varied, suggesting 
that different factors have different weight in explaining and predicting country-level mortality. 
Caloric supply, cigarette consumption, fossil fuel consumption, a proxy for air quality, fruit and 
vegetable consumption and, to a lesser degree, alcohol consumption feature prominently in the 
second principal component. 

The differences in the weights of the covariates between countries suggest that each country, 
with its own characteristics and evolution of mortality, faces different challenges. The present 
analysis, with a fixed set of covariates for all countries, is meant to show the potential benefits of 
a more flexible model. The SEV model with the full set of external variables outperforms the Lee-
Carter model for 18 countries, the Niu-Melenberg model for 12 countries and both models for a 
diverse set of 11 countries, that is, Australia, Bulgaria, Hungary, Italy, Japan, Netherlands, Russia, 
Spain, Ukraine, United Kingdom and USA, plus Canada for which a lack of data for a covariate 
prevents the calculation of the Lee-Carter model for the same years. The choice of the variable set 
has been shown to have an impact on the BIC and the full variable set minimizes the BIC for just 
11 countries (4 of which also outperform the Lee-Carter and Niu-Melenberg models). One can 
reasonably conclude that for each individual country, both fit and forecasting performance can be 
improved upon with different sets of covariates, tailored on that country’s characteristics, and an 
appropriate variable selection. 

Nevertheless, the choice of covariates appears to have captured the most common factors 
influencing mortality. Beyond the external variables, the additional age-period term has no clear 
trend across countries and doesn’t have a common pattern for the age loadings either. Its 
interpretation varies from country to country, suggesting no easily identifiable omitted variables. 
To the extent where the age loadings peak at a moderately old age (65 years in Italy, 75 in Spain), 
it could conceivably be interpreted as the effect of the healthcare system’s ability to reduce 
mortality beyond national affluence and lifestyle choices. For a little under a third of all countries 
considered, though, it’s a stationary process and thus it may simply capture past idiosyncrasies 



with no relevance for forecasting. This suggests that the external factors used actually captured 
the relevant trends in mortality. 

The inclusion of a diverse set of covariates can improve forecasting performance upon the Niu-
Melenberg model, as shown in backtesting. Arguably, though, the biggest advantage of using 
covariates covering a number of different factors is that it allows for wide-ranging model-based 
scenario planning based on actual historical data. That said, historical correlations are not 
guaranteed to remain valid in the future as well: the external variables are proxies of actual 
factors that influence mortality and the relationship between the proxy and the factor may not 
hold in time, there could be possible non-linear effects and other unforeseen factors that may 
influence mortality may emerge (i.e. vaping as an alternative to smoking). 

In some countries model residuals evidenced the presence of cohort effects, a well-known 
phenomenon in the study of mortality. The model presented allows for the inclusion of cohort 
terms at the expense of age-period terms. In general, a cohort term can improve model fit, but it 
is not a given and its inclusion should be considered carefully against the alternatives and 
considering the estimation difficulties. 

A technical limitation of the model is its need to use uncorrelated factors, which leads to the use 
of principal components and therefore limits the direct interpretability of the model coefficients. 
Nevertheless, the impact of a specific variable can be derived from the model coefficients and this 
doesn’t limit the model ability to forecast mortality rates using arbitrary future values of the 
external variables, which is its main application. Another limitation of stochastic mortality 
models is their need of data for a relatively large number of years, which limits the set of 
available covariates and raises questions about the comparability of data across space and time. 

A possible avenue for future research would be an extension to the multipopulation case. On the 
same note, further research is needed to determine why the importance of the different variables 
in the single-population model varies across countries. 
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