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Abstract

Background: A lifetable and the prevalence of some health condition are suffi-
cient to calculate a health expectancy (HLE) using the Sullivan method (Sullivan,
1971), and there are methods available to decompose differences in HLE (Nus-
selder & Looman, 2004; Shkolnikov, Andreev, et al., 2017). But you still might
not be satisfied because observed prevalence could be driven by unobserved
mortality differences between health states, and because the lifetable is itself
a prevalence-weighted average of the mortality by different health states. Thus
these decomposition methods are not guaranteed to isolate health and mortality
effects.
Objectives: We aim to (i) transform Sullivan inputs into state-specific mortal-
ity schedules consistent with a given mortality rate ratio, and to (ii) convert
prevalence into incidence for the case of health deterioration without possibility
of recovery. These rates can be considered independent of one another, allowing
for rate-based decomposition and a cleaner separation of health and mortality
effects.
Methods: Our approach is premised on an algebraic transformation of mortality,
prevalence, and an imposed all-cause mortality rate-ratio between states (which
might come from the literature). Transition probabilities representing health dete-
rioration are then inferred following the logic of multistate lifetable accounting.
We first derive discrete-time transition probabilities, then we reframe the HLE
calculation in terms of these. All resulting expectancies (total and for states)
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are identical to the traditional Sullivan ones, but corresponding decomposition
results are now based on incidence parameters.
Results: Both marginal sums and age patterns attributable to health and mor-
tality differences are different when we decompose using the indirectly derived
multistate expectancies versus a standard Sullivan decomposition. Interestingly,
this method also enables a new decomposition of total life expectancy that
includes a health component.
Conclusions: We give an indirect method to transform Sullivan-style inputs into
a simple multistate model with an irreversible health state, and then show how
to decompose expectancies in terms of these new parameters. This might seem
hypothetical because we do not observe a mortality rate ratio, but we think even
so it’s more informative than previously proposed Sullivan decompositions.

Keywords: Healthy, Mortality, Prevalence, Incidence, Decomposition

1 Introduction

Healthy life expectancy (HLE, also called healthy life years) is most often calculated
and reported using the Sullivan method (Sullivan, 1971), and often the resulting esti-
mate is very close to what would be derived from a multistate model. It’s only natural
for a demographer to want to decompose a Sullivan-derived expectancy. Decomposi-
tion tells us what drives the differences, and has the potential to better guide efforts
to improve health and longevity. The parameters of a Sullivan estimate are a sin-
gle lifetable and information on the prevalence of a health condition. Decomposition
approaches that have thus far been proposed include the widely-used Nusselder and
Looman (2004) approach, which frames mortality in terms of survival, and the mod-
ification proposed by Shkolnikov et al. (2017), which frames the mortality in terms
of mortality rates or probabilities. The latter is meant to more appropriately assign
mortality effects to ages, since mortality rates can be treated as independent between
ages, whereas survival is not. Both of these approaches have a single mortality sched-
ule, however, and both keep health in terms of prevalence rather than incidence (Luy,
Di Giulio, Di Lego, Lazarevič, & Sauerberg, 2020).

If the prevalent health condition in question has any lethality penalty, then it’s
easy to accept that the aggregate mortality over health states must be the prevalence-
weighted average of two state-specific mortality schedules, one relatively high, the
other relatively low. Prevalence is also in part determined by mortality dynamics. A
very lethal health characteristic will not usually have high prevalence, and so on. Since
the Sullivan data inputs are endogenous to one another, their use as decomposition
parameters does not isolate the effects of health dynamics and mortality. There is
not much we can directly do about this except try to find data that yields health
transitions and state-specific mortality, but this is often simply not available. In this
paper we propose an indirect transformation of Sullivan data inputs into incidence-
based multistate transitions: two state-specific mortality schedules, and disease onset.
Unless further information is given, this transformation is only possible for the case
of irreversible health deterioration. Once the Sullivan data inputs are transformed to
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incidence parameters, then you can calculate HLE using a multistate approach (see
e.g., Caswell & van Daalen, 2021) and resulting decompositions should properly isolate
health dynamics and mortality components (Moretti, Riffe, & Lorenti, 2023; Shen,
Riffe, Payne, & Romo, 2023).

There’s just one catch: we need to assume a mortality rate ratio between health
states, as suggested by Brinks, Landwehr, Icks, Koch, and Giani (2013) or implied
by Murray and Lopez (1994). Such information can come from the vast literature
reporting such mortality rate ratios, which nowadays includes systematic reviews sum-
marizing reports on the all-cause mortality risk ratio of people with and without
specific health conditions. But transition parameter and corresponding decomposition
results will naturally vary depending on the rate ratio value chosen. For our example,
we apply this method to the case of sex differences in Alzheimer’s disease includ-
ing other dementias around 2018 in Germany and the United States. We show the
advantages of the proposed transformation-decomposition procedure, and we promise
to report thorough sensitivity testing for different risk ratio assumptions and health
prevalence patterns. That future work will allow us to explore the trade-off between
isolated but uncertain components versus observed but endogenous components, and
other possible limitations of our method.

2 Methods

Let’s define some variables

a will index age, we assume discrete single ages through, please pardon the following
notation which might seem continuous.
m(a) observed all-cause aggregate mortality rates for age a.
q(a) conditional mortality probabilities derived from the (single age) mortality rates
as q(a) = 1− e−m(a)

l(a) lifetable survivorship
L(a) lifetable exposure
π(a) the prevalence of a health condition expressed as a probability
R(a) the mortality rate ratio between health states. In practice we may or may not
have this by age. We assume this.
mu(a)and mh(a) the mortality rates of people with and without the health condition,
respectively. We infer these.
ph→u(a) transition probabilities from good to poor health. We infer this using some
other intermediate steps described later.

For brevity, and at loss of demographic precision, let’s use the following trick to
convert rates m(a) to survival probabilities (from birth) l(a):

l(a+ 1) = e−
∑a

x=0 m(x) , (1)

where age 0 is simply 1. From this we can directly transform to conditional death
probabilities when needed, following standard lifetable calculations. We approximate
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L(a) using linear interpolation:

L(a) =
l(a) + l(a+ 1)

2
. (2)

Let’s say that mortality m(a) is the prevalence-weighted average of state-specific
mortality rates that we don’t observe:

m(a) = (1− π(a))mh(a) + π(a)mu(a) . (3)

We do not see m(a)h (m(a)u) directly, but we are comfortable importing a rate ratio
R(a) for the condition from some other epidemiological study or population, such that:

mu(a) = R(a)mh(a) . (4)

If you don’t have the rate ratio R(a) by age, then you might use a constant R,
and the rest will be the same. In this case we can re-express m(a)h in the above two
equations in terms of m(a), π(a), and R(a):

mh(a) =
m(a)

1− π(a) + π(a)R(a)
, (5)

And now we have two health-specific mortality schedules that are consistent with
observed mortality, prevalence, and an assumed rate ratio. Next we need to re-express
prevalence in terms of transition probabilities from good to poor health. First, derive
l(a) per equation (1) (or your favorite lifetable method), then split it into healthy and
unhealthy parts using π(a) in the usual way:

lh(a) = l(a)(1− π(a))

lu(a) = l(a)π(a)
(6)

The change in lu(a) is a net change nu(a), where we can now account for the decrement
due to mortality, and the remainder must be transitions into poor health. To back out
deaths in poor health du(a), you can either convert m(a)u to a probability qu(a) and
multiply with lu(a), or convert lu(a) to lifetable exposure per equation (2) (or again
your favorite lifetable method), and multiply directly by the rates. The net change
nu(a) plus the deaths du(a) sum to the transitions into poor health th→u(a), and
these can be converted to a transition probability ph→u(a) by dividing out the healthy
survivors lh(a)

nu(a) = lu(a+ 1)− lu(a)

du(a) = Lu(a)mu(a)

th→u(a) = nu(a) + du(a)

ph→u(a) =
th→u(a)

lh(a)
.

(7)

Now we have parameters necessary to calculate HLE in terms of pure incidence,
mh(a), mu(a), and ph→u(a). We may also wish to specify an initial composition to
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the radix based on π(0). Recall the purpose of doing this is to give us conceivably
independent parameters, so as to properly isolate effects when we decompose. So our
expectancy function needs to be based on just these new parameters. You can set
things up using matrix algebra as described by Caswell and van Daalen (2021), or
simply iterate up like so to derive lh(a) and lu(a). You could do so additively like so

lh(a+ 1) = lh(a)− dh(a)− th→u(a)

lu(a+ 1) = lu(a)− du(a) + th→u(a)
(8)

Or multiplicatively like so

lh(a+ 1) = lh(a)
(
1− qh(a)− ph→u(a)

)
lu(a+ 1) = lu(a) (1− qu(a)) + lh(a)ph→u(a)

(9)

Either way, the initial values are set by π(0):

lh(0) = 1− π(0)

lu(0) = π(0)
(10)

Now we are ready to decompose! For this, we will recommend a lifetable response
experiment approach to decomposition (Caswell, 1989), and that will simply require
citing some other work giving the sensitivity calculation for this setup of a multistate
model (in preparation, although Shen et al. (2023) takes this general approach). For the
present, we will set up the decomposition using the linear integral approach (Horiuchi,
Wilmoth, & Pletcher, 2008), using the Riffe (2023) implementation, as in Moretti et
al. (2023), which yields virtually identical results. Either way, no new innovation is
required to proceed to the decomposition now that expectancies can be equivalently
redefined in terms of incidence.

We compare the incidence-based decomposition results with the standard Sullivan
decomposition results. To be clear, the two expectancy functions take the following
form:

HLE = f(m,π) (11)

for the Sullivan case, versus

HLE = g(qh, qu, ph→u, π(0)) (12)

for the indirect incidence case we propose.

3 Application

3.1 Data

To demonstrate the method, we use data on the prevalence of Alzheimer and other
dementia from the GBD (Global Burden of Disease Collaborative Network, 2020) and
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mortality data from the Human Mortality Database (Barbieri et al., 2015) for men
and women in Germany and the United States as the basic data inputs. Prevalence
data from the GBD is delivered in abridged age groups up to 95+. We smooth and
graduate this data to single ages using the PCLM algorithm of Rizzi, Gampe, and
Eilers (2015) as implemented in the R package ungroup (Pascariu, Danko, Schoeley,
& Rizzi, 2018), using HMD population counts as offsets. All analyses are truncated at
age 40 because prevalence of this condition is nearly zero in younger ages in this data.

Fig. 1 Sullivan data inputs used: mortality m(a) (rate scale) from HMD and prevalence of
Alzheimer’s disease and other dementias π(a) (probability scale) from GBD
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We construct a hypothetical single-age pattern of the risk ratio of all-cause mortal-
ity of those with and without this condition. Our hypothetical age pattern of the risk
ratio is based on the systematic review of Liang et al. (2021), where a point estimate
of 5.9 is stated as the average risk ratio, and studies such as James et al. (2014) and
Garre-Olmo et al. (2019), which show that the risk ratio should diminish after age 70.
We use a risk ratio pattern defined by the following polynomial equation over ages 0
to 100, shown also in Fig 2:

R(a) = 7.964 + .01411a− .0002017a2 +−.000005974a3 . (13)

Fig. 2 Risk ratio pattern R(a) assumed
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This pattern will be the primary object of sensitivity analysis as this paper devel-
ops. As it stands, assuming a flat value of 5.9 for R makes no obvious difference in the
visualized decomposition results.

3.2 Results

Following equations (4) and (5), we derive the following two conditional death proba-
bilities qh(a) and qu(a), compared with the original lifetable death probabilities q(a)
(converted to be consistent with eq (1)) in Fig 3. We also include onset ph→u(a) (red
line) derived from eq (7).

Fig. 3 Derived all-cause conditional mortality probabilities (qh(a),qu(a)) by dementia status com-
pared with original HMD lifetable (q(a)), as well as derived onset ph→u(a).
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Both the transitions in Fig 3 and the Sullivan inputs in Fig 1 give the same
expectancies at age 40, displayed in Table 1.

Table 1 Remaining life expectancy at age 40 without
(HLE) and with (ULE) dementia including
Alzheimer’s disease.

country sex HLE ULE
Germany Female 41.78 2.15
Germany Male 38.47 1.11
United States of America Female 40.30 2.49
United States of America Male 37.27 1.57

Finally, we show the results of incidence-based decomposition of sex differences in
HLE, ULE, and total life expectancy, comparing results obtained when we calculate
HLE using the Sullivan parameters of Fig 1 versus the incidence parameters of Fig 3.

The main findings are that (i) initial conditions at age 40 play a negligible role
in this data, (ii) males’ lower onset of dementia in Germany reduced the sex-gap in
HLE by around 4 months, and the overall life expectancy gap by 2 months, whereas
in the USA sex differences in onset were negligible, (iii) most of the female advantage
in all expectancies (HLE, ULE, Total LE) are due to lower mortality rates among
those without dementia, accounting for over 3 years of the HLE and Total LE gaps in
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Table 2 Comparison of decomposition approaches for sex differences in remaining life
expectancy at age 40 with and without Dementia.

Incidence Sullivan

Country Expectancy π(40) ph→u qh qu m π
Germany HLE -0.00 -0.34 3.62 0.03 3.78 -0.46
Germany ULE 0.00 0.16 0.41 0.49 0.59 0.46
Germany Total -0.00 -0.19 4.03 0.51 4.36 0.00
United States of America HLE -0.00 -0.04 3.04 0.02 3.31 -0.28
United States of America ULE 0.00 0.03 0.41 0.48 0.64 0.28
United States of America Total -0.00 -0.02 3.45 0.51 3.95 0.00

both countries, and almost 5 months of the ULE gap, (iv) higher male mortality rates
among those with dementia increased the sex gap in ULE and Total LE by around
half a year in both countries.

The Sullivan results are different in a few key ways: (i) with the exception of
ULE in the USA, more weight is given to mortality for ULE and HLE (ii) the health
effect for HLE (π) is symmetrical to that of ULE, whereas for the incidence-based
decomposition onset (ph→u) is not, (iii) the prevalence effect is of greater magnitude
than the onset transition effect for both expectancies and countries, (iv) 100% of
the Total LE difference is attributed to mortality differences by necessity, in essence
because the Sullivan approach gives the same mortality to both health states.

4 Discussion

These preliminary results highlight how incidence-based decomposition can yield more
specific insights into what explains differences in HLE, ULE and Total LE. In this
current proposal, we include a health condition with a very large lethality penalty. We
will add another example of a non-reversible health condition with a different preva-
lence pattern and different likely rate ratio that might highlight other ways that this
method gives more information. For example, in the current dementia example, initial
conditions at age 40 were unimportant, but in general we’d expect initial conditions to
be very important for multistate models with non-reversible states of decreased health.

We think that leveraging the rate ratio as we do here could be a useful trick for
other empirical exercises. For example, when estimating multistate transitions from
surveys like HRS, one can adjust for mortality underestimation using the directly
derived rate ratio and an a higher quality lifetable based on vital statistics. We have
not yet reflected on what further minimal assumption would be required in order to
extend the method to include recovery transitions.
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version for posterity.
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