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Abstract

BACKGROUND
In recent years, lifespan inequality has become an important indicator of population health. Un-
covering the statistical properties of lifespan inequality measures can provide novel insights on the
study of mortality.

METHODS
We revisit the e† measure of lifespan inequality, introduced in Vaupel and Canudas-Romo (2003).
Leveraging a result first noted in Schmertmann (2020), we derive an upper bound for e†. This
finding motivates us to introduce the “Average Uneven Mortality” (AUM) index, a normalized
version of the e† measure that can be meaningfully compared across countries and over time.

RESULTS
The use of the AUM index is illustrated through an application to observed period and cohort
death rates from the Human Mortality Database. We explore the behavior of the index across
age and over time, and we study its relationship with life expectancy. The AUM index at birth
declined over time until the 1950s, when it reverted its trend; also, the index generally increases
with age.

CONTRIBUTION
We elaborate on Vaupel and Canudas-Romo’s e† measure, deriving its upper bound. We exploit this
result to introduce a novel mortality indicator, which provides a new perspective on the historical
evolution of lifespan inequality. We also develop novel routines to compute e† and the standard
deviation of lifetimes σT from death rates, which are possibly more precise than available software,
particularly for calculations involving older ages.

∗Corresponding author: marco.bonetti@unibocconi.it
†The authors contributed equally to this work.

1

mailto:marco.bonetti@unibocconi.it


1 Relationships

An upper bound for e†

Let e† denote the average number of life-years lost as a result of death (Vaupel and Canudas-Romo,
2003). Schmertmann (2020) showed that Vaupel and Canudas-Romo’s e† equals the covariance
between the time to death T and its transformation through its own cumulative hazard function,
i.e. Λ(T ):

e† = Cov[T,Λ(T )] .

Here, we highlight a new result. This covariance relationship implies an upper bound on e†. In
particular, it holds that:

0 ≤ e† ≤ σT , (1)

i.e., e† is bounded from above by the standard deviation σT of the time to death T . This result
holds more generally for the indices computed conditionally on surviving until any given age a:

0 ≤ e†(a) ≤ σT (a) . (2)

The AUM, a novel mortality indicator

We leverage the finding of an upper bound on e† to introduce a novel mortality indicator. We
define the “Average Uneven Mortality” (AUM) index as the correlation coefficient between T and
Λ(T ):

AUM = Corr[T,Λ(T )] =
e†

σT
. (3)

The AUM is a novel mortality index that can be used to study lifespan inequality and mortality
patterns. It is a normalized version of e† that ranges between 0 and 1; as such, it provides a rigorous
assessment of lifespan inequality comparisons across countries and over time (since it ranges on a
fixed, rather than time-varying, support). Moreover, the index is equal to 1 if and only if T has
an exponential distribution with parameter θ (T ∼ Exp(θ)). As a consequence, the index can help
determine whether the hazard rate is constant (AUM = 1) or varies with age (AUM < 1). This can
be particularly useful in the analysis of the tail of the survival distribution, conditional to survival
to different ages.

Let ˙AUM denote the partial derivative of AUM with respect to calendar year1. Then, the relative
derivative of AUM is such that:

˙log(AUM) > 0 ⇐⇒ ˙log(e†) > ˙log(σT )

˙log(AUM) < 0 ⇐⇒ ˙log(e†) < ˙log(σT ) ,

that is, the relative change of the AUM index is positive (negative) when the relative change in e†

is greater (lower) than the relative change in σT .

2 Proofs

Consider a population whose individuals have the same initial exact age a and face identical force
of mortality λ(t) in future years t ≥ 0 beyond a. Let T thus be a non-negative random variable
denoting time to death, which is distributed according to the probability density function f(t).
Let S(t) = exp[−

∫ t
0 λ(u)du] = exp[−Λ(t)] denote the survival function, i.e. the fraction of the

1In the following, a dot over a function will denote its partial derivative with respect to calendar year y (which
may refer to either a given time period or birth cohort), but we drop the notation y to ease readability.
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population expected to survive at least t years. Note that this scenario can be rewritten in terms
of conditional random variable and conditional density function of the original population, starting
from age 0 rather than age a (see Supplementary Materials).

Let e† =
∫ ω
0 e(u)f(u)du denote the life lost to mortality (Vaupel and Canudas-Romo, 2003), where

e(u) =
∫ ω
u S(t)dt/S(u) denotes the remaining life expectancy at age u, and ω the highest age

attained in the population.

We start from the relationship shown by Schmertmann (2020):

e† = Cov[T,Λ(T )] , (4)

i.e. the equality between e† and the covariance between T and its transformation through its
own cumulative hazard function (for an alternative proof of this relationship, see Supplementary
Materials). Rewriting (4) in terms of correlation rather than covariance produces:

e† = Corr[T,Λ(T )] · σT · σΛ(T ). (5)

Now, we consider the well-known fact that, for any hazard function λ(t), Λ(T ) ∼ Exp(1) (for a
short proof, see Supplementary Materials). This implies that σΛ(T ) = 1, yielding the interesting
new expression:

e† = Corr[T,Λ(T )] · σT . (6)

Furthermore, since T and Λ(T ) are two non-negative random variable, their correlation is also
non-negative, i.e. Corr[T,Λ(T )] ∈ [0, 1]. As such:

0 ≤ e† ≤ σT . (7)

Recalling that the analysis is conditional on survival to the assumed starting age a, we can gener-
alize as:

0 ≤ e†(a) ≤ σT (a) , (8)

where e†(a) is the life lost to deaths after age a, and σT (a) the standard deviation of time to death
after age a, both conditional on survival to age a.

Next, we define the “Average Uneven Mortality” (AUM) index as the correlation coefficient between
T and Λ(T ), i.e. AUM = Corr[T,Λ(T )]. Rewriting the correlation in terms of covariance, and
recalling that σΛ(T ) = 1, we can rewrite AUM as:

AUM =
Cov[T,Λ(T )]

σT · σΛ(T )
=

e†

σT
. (9)

Leveraging the upper and lower bounds of e† in Eq. (7), it follows that:

0 < AUM ≤ 1 , (10)

with the result again holding more generally conditionally on survival to any given age a.

We now prove that AUM is equal to 1 if and only if T has an exponential distribution. On one
hand, if T ∼ Exp(θ), then Λ(T ) = T · θ and Corr[T,Λ(T )] = AUM = 1. On the other hand,
if AUM = Corr[T,Λ(T )] = 1, then Λ(T ) = a + bT . Since Λ(0) = 0, then a = 0, implying that
Λ(T ) = bT and S(T ) = e−bt, i.e. T ∼ Exp(b).

Finally, let us derive the partial derivative of AUM with respect to calendar year y:

˙AUM =
ė† σT − σ̇T e†

σ2
T

, (11)
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from which follows that the partial (and relative) derivative of AUM is positive (negative) when
the numerator of Eq. (11) is positive (negative). Rearranging terms (and since both measures are
non-negative):

˙AUM > 0 ⇐⇒ ˙log(AUM) > 0 ⇐⇒ ˙log(e†) > ˙log(σT )

˙AUM < 0 ⇐⇒ ˙log(AUM) < 0 ⇐⇒ ˙log(e†) < ˙log(σT ) .

3 Related results

The closest link to the relationships that we present in this paper is provided by Schmertmann
(2020) in the framework of revivorship models, where the author derives the equality between e†

and the covariance between T and its transformation through its own cumulative hazard function.
The cumulative hazard function is not frequently used by demographers. One recent exception
is provided by Ullrich et al. (2022): the authors introduce a new longevity measure based on the
cumulative hazard. The proposed death expectancy H1 indicator corresponds to the age at which
the cumulative hazard is equal to one (or equivalently, the survival function is about 36.8%). The
authors argue that the H1 measure could be used as a dynamic threshold age for the oldest-old.

In demography, there exists a variety of indicators that are used to summarize the age-at-death
distribution. Several indicators focus on the first moment, or location, of the distribution, i.e. the
so-called “central longevity indicators” (mean, median, and modal ages at death, Canudas-Romo,
2010; Cheung et al., 2005). Another class of indicators is used to study the second moment, or
scale, of the distribution. Both absolute and relative measures of the variability of the distribution
are used for this purpose. Examples of absolute indices are the variance and the e† measures,
while the life-table entropy, the coefficient of variation, and the Gini coefficient are examples of
relative measures. Typically, relative measures of variability are computed by dividing an absolute
variability measure by life expectancy. Up to our knowledge, the AUM index is among the very
firsts mortality indicators that go beyond these two classes of indicators, by analysing the ratio of
two absolute measures of variation. One recent proposal in this direction is the ratio of expansion
to compression measure, which considers the e† components before and after the threshold age at
death (Zhang and Li, 2020).

The life-table entropy measure can be partly related to the AUM index, since both measures
share the same numerator. The life-table entropy is a relative measure of variability of the age-
at-death distribution compared to life expectancy at birth (Demetrius, 1974; Keyfitz, 1977; Leser,
1955). However, the difference in the denominator of the two measures results into two different
interpretation of the indices: the entropy measures the (relative) variability of the distribution,
while the AUM measures how close the distribution is from having constant mortality. Both indices
can nonetheless be used for the study of lifespan inequality, with the AUM providing an innovative
perspective in terms of normalized lifespan inequality. Another recent attempt in this direction was
made by Permanyer and Shi (2022), who introduced normalized lifespan inequality to explicitly
consider that life expectancy has been increasing at a faster pace than maximal length of life. For
any given year, the authors compute normalized lifespan inequality by dividing lifespan inequality
indices by their maximum value under an hypothetical distribution with life expectancy equal to
the observed one.

4 Applications

Here we illustrate the use of the AUM index with an application to observed period and cohort
death rates (obtained by dividing deaths by exposures), as well as to period life-table death rates.
All data were retrieved from the Human Mortality Database (2023, henceforth HMD). Routines
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for deriving these results were developed in R (R Core Team, 2022) are are available in the Supple-
mentary Materials as well as in a [blind for peer review] open-access repository2. The analytical
formulas that we derived and employed for the implementation of our routines are available in the
Supplementary Materials. Unless otherwise specified, all mortality measures are computed from
age zero.

We start by investigating the temporal evolution of the AUM index in observed period death
rates for two populations: Swedish females and Italian males. Figure 1 shows the e†, σT and
AUM measures over time for both populations. In the left panels, we can observe the well-known
reduction of lifespan inequality over most of the period analysed, coinciding with the increase in life
expectancy (see, e.g., Aburto et al., 2020; Edwards and Tuljapurkar, 2005; Wilmoth and Horiuchi,
1999). The two graphs show that e† never exceeds σT , in agreement with our derived upper bound
of e†. The right panels show that the AUM index declined rather consistently from 1751 until
the 1950s, when it reached a minimum value. Thereafter, a reversal of the decreasing trend is
observable. Sudden increases in the index are visible in correspondence with the Spanish flu (for
both populations) and the two World Wars (for males only). From the 2000s, the index displays
a rather constant behavior.
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Figure 1: Evolution of the e† (points) and σT (triangles) lifespan variability measures (left panels),
and of the AUM index (right panels) over time for Swedish females and Italian males, 1751–2021.
Colors correspond to different levels of life expectancy at birth (e0).
Source (all figures and tables): Authors’ own elaborations on data from the HMD (2023).

Analysing the temporal trend of the AUM index across the 41 populations available in the HMD
by sex provides additional insights. Figure 2 shows a rather substantial overlap in the decrease
of the AUM index across sexes until the 1950s (except during the two World Wars). From the
1950s onward, as the AUM index stopped declining and started its increase, a marked departure
from the overlap between sexes occurred, with male populations generally characterized by greater

2Available at: https://osf.io/fj94p/?view_only=65ef7ac73dbc46318be3284d55722214
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values of the AUM. It is further worth noticing that, for several female populations, the decline of
the AUM halted and reversed somewhat later than the 1950s.
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Figure 2: Evolution of the AUM index over time for 41 female (purple) and male (orange)
populations, 1751–2021.

How can we interpret these trends of the AUM index? Formally, as we have shown, the AUM
decreases (increases) when the relative change in e† is lower (greater) than the relative change in
σT . This means that throughout most of the period analysed (1751–2021), the relative change
(generally, reduction) in σT was greater than the one in e†; however, a reversal of this trend
occurred around the 1950-60s. This period is often identified with a transition to a new mortality
regime, characterized by an acceleration of mortality improvements at older ages (Kannisto et al.,
1994; Vaupel et al., 1998; Wilmoth and Horiuchi, 1999) and a more pronounced shifting dynamic
of the age-at-death distribution (Bergeron-Boucher et al., 2015). From this perspective, the AUM
index provides insights on the transition from mortality compression to mortality shifting (Janssen
and de Beer, 2019).

An alternative interpretation of these findings can be made considering that the AUM is the
normalized version of e†. The normalization implies that AUM takes values on a fixed support,
i.e. between 0 and 1, for all years and populations. Conversely, e† can vary on very different
supports. Consider, for example, the top left panel of Figure 1. Until the 1900s, e† could take
values up to approx. 33 years; in 2000, its maximum value would have been approx. 13 years. The
fact that e† (and several other lifespan inequality measures) has a time-varying support may bias
our assessment of lifespan inequality trends. Conversely, the fixed support of the AUM index allows
for a more meaningful comparison of the index across countries and over time. Our findings suggest
that the normalized years of life lost have not continued to decrease throughout the time period
analysis (as suggested instead from the historical evolution of lifespan inequality measures, see e.g.,
Edwards and Tuljapurkar, 2005; Wilmoth and Horiuchi, 1999): as lifespan inequality continued to
decrease, normalized lifespan inequality started to increase around the 1950-60s. This is further
illustrated by Figure 3 which shows, for the 41 female populations of the HMD, the relationship
between the AUM index and two indices of (absolute and relative) lifespan variability: the e† and
the entropy of the life table. The figure clearly shows that, as lifespan inequality continued to
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reduce over time, the AUM index declined for most of the period considered, reaching a minimum
for values of e† and the entropy around 13.5 and 0.2, respectively, when it then started to increase.
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Figure 3: Relationship between the AUM index and absolute and relative lifespan variability,
measured with the e† (left) and the life table entropy (right), respectively, for 41 female populations
from 1751 to 2021. Colors correspond to different calendar years.

The reduction of the AUM index throughout most of the analysed period can also be interpreted
with respect to how close the distribution is to an exponential one (i.e. one with constant mortality).
On the one hand, the density of the exponential distribution is monotonically decreasing, having its
maximum at age zero. On the other hand, the age-at-death distribution is typically bimodal, with
one mode in infancy and another in late life (Kannisto, 2001). It is probably not surprising that the
highest values of the AUM index were observed in the past, when a significant number of deaths
were occurring at infant and childhood ages: indeed, the corresponding distribution of deaths was
characterized by high and monotonically decreasing values at the youngest ages, somewhat closer
to the shape (at least in those early ages) of the exponential distribution. Mortality improvements
at these ages throughout subsequent decades decreased the relative importance of deaths at these
ages, with more and more deaths occurring at older ages. These improvements in infant mortality
are reflected in the reduction of the AUM.

Next, we analyse the relationship between the AUM index and period life expectancy at birth.
Figure 4 shows this relationship for the 41 populations in the HMD, by sex. For low levels of
life expectancy, there is a linear negative relationship between the two measures. However, there
appears to exist a threshold level of life expectancy (around age 70 and 60 for females and males,
respectively) at which the negative relationship ceases to hold. For females, a positive relationship
emerges above the threshold, whereas for males, the relationship appears to be more erratic.
It should be noted that, due to data limitations regarding historical data, few data points are
available for older periods, which are characterized by lower levels of life expectancy; as such, the
strong linear relationship observed for low levels of life expectancy could be partially due to data
limitations.

We now move to the same analysis using cohort instead of period observed death rates. Figure 5
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Figure 4: Relationship between the AUM index and period life expectancy at birth for 41 female
(left) and male (right) populations from 1751 to 2021. Colors correspond to different calendar
years. The black line corresponds to smoothing the observed data using a cubic regression spline
(using the gam function of the mgcv package (Wood, 2017))

shows the relationship between the AUM index and cohort life expectancy at birth for six female
and male populations with a long mortality data series3. Unlike the period analysis, one observes a
lack of reversal of the linear relationship between the two measures. For cohorts, the AUM tends to
linearly decrease over increasing values of cohort life expectancy (typically belonging to the more
recent cohorts).

Finally, we turn to study the behavior of the AUM index at all ages, focusing on a single population
only, namely Swedish females. In addition to computing the AUM using observed death rates, we
also employ period life-table death rates. The reason for doing so is that observed and life-table
death rates differ at the oldest ages, since the latter are smoothed at older ages using the Kannisto
model of mortality (see Wilmoth et al., 2021, p. 34).

Figure 6 shows the results of the age analysis. In general, we observe that the AUM index tends
to increase with age (declining in the first few years of life in the oldest periods considered).
Importantly, the figure highlights the difference of the AUM index at the oldest ages. When the
index is computed on observed rates (left panel), there is high variability of the AUM estimate at
the oldest ages, reflecting the variability of the underlying rates; conversely, when life-table death
rates are used as input, the AUM index approaches the value of 1. This was an expected result,
since life-table death rates are smoothed at older ages according to a logistic pattern (the Kannisto
model), which is characterized by a flatter and flatter hazard function that mimics an exponential
(constant) hazard (whose AUM value is exactly 1).

It is noteworthy to further mention here that conventional routines generally employed to calculate
life table variability measures (such as those available in the LifeIneq R package, Riffe et al.,
2023) return AUM estimates that exceed the upper bound of 1 at the very older ages, suggesting

3The six populations are those of France, Italy, Finland, Denmark, Sweden, and the Netherlands.
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Figure 5: Relationship between the AUM index and cohort life expectancy at birth for 6 female
(left) and male (right) populations from 1751 to 1930. Colors correspond to different birth cohorts.
The black line corresponds to smoothing the observed data using a cubic regression spline (using
the gam function of the mgcv package (Wood, 2017)).

some potential bias in the estimation of e† or σT , or both, at older ages. Please refer to the
Supplementary Materials for a comparison analysis between our AUM estimates and those derived
from conventional routines.

5 Discussion

In this paper, we have elaborated on the e† measure of lifespan inequality introduced by Vaupel and
Canudas-Romo (2003). Leveraging a recent result noted in Schmertmann (2020), we derived the
upper bound of e†. This is, up to our knowledge, a novel and important result. It is intriguing that
the upper bound of e† is another absolute measure of lifespan inequality – the standard deviation
of ages at death in the population (σT ). Even more intriguing, we have shown that e† reaches its
upper bound if and only if the underlying age-at-death distribution is exponential.

The upper bound of e† stimulated us to introduce the “Average Uneven Mortality” (AUM) index,
a new mortality index that can be used to study mortality across age and over time. The index
has two closely related interpretations. On the one hand, it measures the linearity of the relation-
ship between the random variable T and its cumulative hazard function; on the other hand, and
equivalently, it measures the distance of the age-at-death distribution from an exponential one,
or the distance of the hazard function from a constant (“even”) hazard. The AUM is a relative
index, bounded between 0 and 1, and it is obtained by dividing two absolute measures of variation
of the age-at-death distribution. This is one among the very first proposals to build a mortality
indicator based on (the ratio of) two lifespan inequality measures. Other relative indicators of
mortality employed in the literature are computed by dividing an absolute variability measure by
life expectancy (e.g. life-table entropy, coefficient of variation, Gini coefficient).
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Figure 6: AUM index over ages 0-110+ for Swedish females for the years 1751–2021 computed
on observed rates (left panel) and life-table rates (right panel).

Introducing a novel mortality index raises the natural “so what?” question. We believe that
the AUM index provides novel insights on the study of human mortality age patterns and time
developments. Importantly, the AUM index takes values on a fixed support, suggesting that
comparison across countries and over time are more meaningful than when one uses an indicator
whose range can change over time (such as e†). Indeed, in applied statistics, the correlation
coefficient is generally favoured to the covariance, since the latter tells little about the strength of
the dependence between two random variables. The analysis of the normalized e† suggests that the
decrease of lifespan inequality has reversed its secular decline in most recent decades. Our findings
align well with those of Permanyer and Shi (2022), who also observed that declines of normalized
lifespan inequality stopped and even reversed at high levels of life expectancy. Furthermore, while
it is well-known that lifespan inequality measures are highly correlated between each other (see,
e.g. Van Raalte and Caswell, 2013; Wilmoth and Horiuchi, 1999), the evolution of the AUM index
shows that the relative change of e† and σT differed over time: the relative change (typically
reduction) in σT was greater than the one of e† for most of the period that we analysed. The 1950s
marked a clear reversal of this trend, likely connected to accelerating mortality improvements at
older ages and related shifting of the age-at-death distribution.

The relationship between the AUM index and life expectancy at birth provides an interesting per-
spective on the evolution of the age-at-death distribution. We found a linear negative relationship
between the AUM and life expectancy, which ceased to hold only at high levels of period life ex-
pectancy. Interestingly, this disruption did not occur in the analysis of cohort mortality data. Due
to the limitation of such data, we cannot know whether this disruption will materialise for more
recent birth cohorts, or if it is a specific feature of the most recent period death rates. If the sec-
ond hypothesis were to hold true, it would imply that information on the scale of the age-at-death
distribution would be predictive of its location, with important consequences for mortality analysis
and forecasting.
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The AUM index can also be employed to study the mortality age-pattern. In our analysis, we
observed that the AUM index generally increases over age. In the analysis of period life tables
(with modelled death rates), the index always approaches its upper limit at older ages, signaling
that the hazard function resembles a constant exponential hazard. When observed death rates
are employed instead, there is significant variability in the estimate of the AUM at older ages.
Clearly, there is great potential in employing the AUM index for detecting mortality deceleration,
and eventually the existence of a mortality plateau; our proposed indicator could thus contribute
to the current debate about the mortality plateau at the oldest ages (see, e.g. Barbi et al., 2018;
Dang et al., 2023; Gampe, 2021; Newman, 2018). The quantification of the statistical uncertainty
associated with the estimated AUM estimate should be a critical aspect to inform such analysis,
especially for small sample sizes, and we plan to pursue this in our future research.

An important contribution of our work relates to the software routines that we have developed
to calculate the AUM index. Initially, we started by computing the AUM using standard and
available routines for calculating lifespan inequality measures from a life table. The results that
we obtained were unexpected, as the AUM was exceeding its upper bounds at older ages – an
empirical result that contradicted our theoretical findings. As such, we decided to implement new
routines, based on the formulas that we derived in this paper. The new empirical estimates that
we obtained did not present such anomalies. While we cannot be certain, evidence presented in the
Supplementary Materials suggests that our routines for computing e† and σT improve estimation
precision with respect to conventional routines, particularly for the older ages. Our routines are
publicly available in the Supplementary Materials accompanying this article as well as in a public
repository, and we hope that further computational efforts will be directed to assess estimation
accuracy of lifespan variability measures at the oldest ages.

Finally, analysing the AUM index can be related to the more general study of the shape of the age-
at-death distribution, which has gained increasing attention in most recent decades (for a recent
review, see, e.g., Bonetti et al., 2021). We believe that this novel mortality indicator can provide
additional insights on human mortality, enlarging the toolbox of available methods for the analysis
of mortality developments.
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