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Extended Abstract

As Link and Phelan (1995) argue in the Fundamental Causes of Diseases theory, health out-
comes are never insulated from social determinants. Evidence has been accruing through the
past years. For example, both stages of the Whitehall study identified a positive association be-
tween health and socioeconomic conditions (Marmot et al., 1991). Similarly, the Commission
on Social Determinants of Health (2008) highlighted that health status consistently correlates
with socioeconomic circumstances throughout one’s life. In England and Wales, professional
workers exhibit a risk of serious illness and premature death at least 50% lower compared to
that of unskilled manual workers. Death per se as the termination of life and the inexorable
demise of health, also intertwines with diverse social factors. However, in both sociological
and biological research on health, the majority of the work which attempts to understand death
at the individual level concentrates on a singular perspective. It is surprisingly understudied in
a holistic approach that integrates information from different disciplines.

Such scant evidence also leaves the question of how predictable death is unanswered, as
accurate predictions rely on the quality of the information which trains the algorithm, not to
mention explorations from solely the sociological perspective. Therefore, underpinned by theo-
ries such as intersectionality (Crenshaw, 1989), we embrace a more comprehensive perspective

For Correspondence: Jiani Yan, Email: jiani.yan@sociology.ox.ac.uk. Code Availability: Codes can be
found at GitHub. Please see the readme.md file within that repository for a data availability statement. Acknowl-
edgements: Funding is gratefully acknowledged from the ESRC Grand Union DTP.

1

mailto:jiani.yan@sociology.ox.ac.uk
https://github.com/vallerrr/OX_Thesis_Chapter_1_Death_Predictions


European Population Conference 2024

in our investigation of the social determinants of health. One of the seminal attempts is from
Puterman et al. (2020), where they have integrated information from 57 variables to access the
hazard levels of those factors. The study itself does not adequately address model performance
and inferences are built upon precarious models. Instead of traditional survival analyses or re-
gressions, we implement a predictive framework to accurately investigate the existing frontier
of the predictive capability of various social determinants (holistically) in estimating death pre-
dictivity (predictive precisely), with advanced machine learning algorithms and Explainable AI
methods to surface variable importance (explainability). We also contribute to several method-
ological discussions in quantifying seed variability and exploring predictive asymptotics.

Specifically, there are three main contributions from this work, including predicting, holis-
tic comparisons and quantifying precision. Specifically, using advanced data linkage in the field
of ageing including the Health and Retirement Study in the US (HRS), the Survey of Health,
Ageing and Retirement in Europe (SHARE) and the English Longitudinal Study of Ageing in
the UK (ELSA), we estimate death predictability in a holistic manner across those three dif-
ferent regions. We extract information on seven health-related domains including Adulthood
Psychological Diathesis, Adulthood Socioeconomic, Childhood Adversity, Adulthood Adverse
Experience, Health Behaviours, Social Connections and Demography. Risk factors are selected
on the grounds of sociological theories such as Fetal Conditions (Barker, 1995), Fundamental
Causes (Link & Phelan, 1995), Life Course Theory (Ben-Shlomo & Kuh, 2002) and Biopsy-
chosocial model (Engel, 1977), contending the strength of social determinants of health. Pre-
diction accuracy is powered and guaranteed by the Super Learner algorithm, a state-of-the-art
ensemble learning algorithm to calculate the predictability of death. We then ‘unravel the black
box’ of prediction via the use of Shapley values, allowing us to better ‘surface’ variables at the
single risk factor level. We also develop a new method which allows us to further understand
risk factors’ relative importance at the domain level. Both of those calculations are performed
at the single dataset level to facilitate cross-sectional comparisons and at the combined dataset
level to further explore the predictive ceiling of death.

Lastly, we also investigate predictive precision: more methodological and technical aspects
of prediction to quantify precision. This is achieved in two stages. Firstly, we develop the foun-
dations of tools which allow us to consider the ‘asymptotics of predictive power’, estimating
the impact of varying predictor numbers and training dataset size on the predictive power. Out-
comes will be derived from the mean of five random subsetting procedures on the predictors
and training set. We then introduce a new heuristic – the median of a large number of trials
of seeds – which allows us to account for the randomness inherent in manifold works. The
workflow is summarised in Figure 1. Our conclusion is that when approached as a predictive
endeavour, the accuracy of death prediction is notably high. With the augmentation of datasets,
there is a plausible potential to eradicate reducible error, thereby approaching the ‘predictive
ceiling’.

Result 1: With a comprehensive predictive framework, the models demonstrate notable
performance across most datasets, where the ROC-AUC scores in the HRS, SHARE, ELSA
and Combined datasets are 0.822, 0.796, 0.908 and 0.947 respectively. Considering that all
datasets are unbalanced, we also evaluate the model performance with the PR-AUC score,
where the results are 0.689 (0.293),0.519 (0.202),0.246 (0.057) and 0.883 (0.225) for those
datasets. Numbers in the parenthesis represent the in-sample prevalence of death for each
dataset. They serve as the inference base (random guess) for the PR-AUC score.
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Figure 1: Research Design

Result 2: Competing with all risk factors, the top important risk factors from SHAP cover
most of the domains, with differences across different datasets. In common, Age and Gender
are the most important predictors in all datasets. For HRS, outstanding factors concentrate on
socioeconomic and health behaviour domains, including History of Smoking, Low/no Vigorous
Activity, Income, Trait Anxiety, Wealth, and Lower Occupational Status (importance rank from
high to low). For SHARE, only two other top factors include Wealth, Current Smoker stand
out. For the combined data, Low/No Vigorous Activity, Current Smoker and Low/No Vigorous
Activity are the other top. Results are illustrated in Figure 2. Giving the sparse nature of
the dependent variable in the ELSA dataset (5% prevalence), we refrain from interpreting the
SHAP values within the UK context, as inconsistent model performance may yield deceptive
insights.

Result 3: Similar domain rank patterns emerge across different datasets, as shown in Figure
3. Predominantly, the demography (including Age and Gender) and socioeconomic domain
play pivotal roles across all datasets. Intriguingly, in the US context, the psychological domain
supersedes others in the rest domains, whereas in the SHARE dataset, behaviours assumes
greater significance.

Result 4: Persistent and consistent evidence of the effect of dataset size on model perfor-
mance is observed across all evaluation metrics in Figure 4. Models trained with larger training
datasets outperform other models with smaller datasets when predicting the same out-of-sample
set, facilitating the understanding of reducible errors in machine learning predictions.

Result 5: As shown in Figure 5, prediction accuracy varies greatly with different choices
of seed in the train-test set split. Using LightGBM and the combined dataset, the predictive
accuracy for each evaluating metric spreads over about three standard deviations away from
the mean value to each side (i.e. metric span is circa six to seven times s.d). For example, the
mean, max, min and std of PR-AUC score across 10,000 different seeds in train-test splitting
is 0.625, 0.597, 0.651 and 0.007 respectively. Albeit normal-like distributions, we call for
attention to the range as the choice of seed is completely subjectively random and the resulting
single outcome will be an arbitrary point within the span and thus affecting the prediction
precision substantially, rather than the accuracy.
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Figure 2: Top Important Risk Factors of Three Datasets from SHAP
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Figure 3: Domain-level Prediction Contribution of Three Datasets
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Figure 4: Predictive Asymptotics with Super Learner on varying predictor and training set size
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Figure 5: Model performance distribution over 10000 seeds in train-test split

7


