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ABSTRACT (250 words) 

A common perception exists that West-African migration is predominately driven by 

environmental stress, conflict, and economic factors. For instance, scholars have argued that 

precipitations and droughts in the Ghanian northern regions are important factors in the out-flows 

to the southern parts of the country. However, few empirical analyses have been directly tied large-

scale migration with slow onset climatic processes.  

To fill these gaps, our research focuses on the temporal and spatial changes of migration and 

contextual factors. Net-migration estimates, temperature, precipitation, conflict, and artisanal 

(small-scale-company) gold-mining datasets were harmonized at high-resolution, to model 

environmental migration drivers in Ghana, by 5-year interval, from 1985 to 2014.  

We adopt a three-step approach. First, we apply the geographic-weighted-regression (GWR) to 

explore how factors interact as spatial system; second, we adopt the multiscale-geographic-

weighted-regression (MGWR) to investigate the local incidence of each variable. Finally, we 

validate results using the machine learning approach (geographically-weighted-random-forest, 

GWRF).  

Results reveal the variables that play a relevant role in the interplay with migration. From 2000 to 

2014, changes in net migration are associated with changes in maximum-temperatures, mean 

length of consecutive dry-days, and artisanal gold-mining activities; yet the models capture high 

spatial variability across Ghanian territories. 

Our contribution to the literature on environmental and climate migration is twofold. First, from a 

methodological perspective, we determine the complementary of the three geo-spatial methods. 

Second, our analysis gives empirical evidence on how environmental-climate conditions, acting in 

combination with other political and socio-economic factors, alter local-systems and in-turn 

influence migration behaviors over time. 

 

INTRODUCTION 

Scholarly research on the direct and indirect contribution of environmental and climate factors to 

migration has expanded greatly in the past three decades. Studies have well documented that 

droughts and precipitation anomalies as having the potential to lead to a range of short- and long-

term migration outcomes, with the direction, duration of migration and demographic 

characteristics of migrants, being highly context specific (Gray and Wise, 2016). There is also 

research suggesting that environmental factors can have an indirect influence on migration through 

the creation or exacerbation of violent and/or non-violent conflict over access to land or natural 

resources (UN-Habitat, 2022). As Ferris (2020) notes, beside scholars and humanitarian actors 



mostly interested in the consequences of displacements linked to sudden-onset, an increasing 

number of development researchers recognize the assessment of long-term consequences of slow-

onset events as a crucial strand to elucidate linkages between climate, conflict, and migration. For 

instance, environmental and climate factors are believed by scholars to play a causal role in 

migration patterns over time, within Ghana, between Ghana and neighbouring countries in West 

Africa and, possibly, from Ghana to more distant destinations in Europe. Previous studies – 

reviewed in greater detail below – suggest that precipitation patterns and periodic droughts in the 

drier, northern parts of the country have been important factors in the out-migration of people to 

more southerly parts of the country, especially younger residents of working age. The most 

common migration destinations for out-migrants include urban centres, or rural areas, with 

commercial agricultural production, and artisanal (small scale) gold mining areas. Additionally, 

research suggests that migration in some areas of dryland Ghana may mostly relate to non-violent 

resource-based conflict, through the movement of pastoralists and their livestock into farming 

areas when their usual grazing areas are impacted by droughts (Issifu et al., 2022). 

Our study takes advantage of newly available net migration datasets that provide estimates of 

migration changes at very fine spatial resolution, to explore and map in greater detail how 

precipitation patterns, extreme temperatures, artisanal (small-scale-company) gold mining, and 

conflicts have influenced migration patterns in Ghana. Using emergent techniques in geospatial 

regression and machine learning models, we cover from 1985 to 2014, dividing the 30-year period 

by 5-year interval. Our methods reveal statistically significant relationships at local level, between 

environmental factors and changes in net migration patterns, from 2000 to 2014. Specifically 

results show the association between the changes in net migration and the maximum temperature, 

mean length of consecutive dry days, and artisanal gold-mining effects; yet these effects vary 

consistently across Ghanian territories. For instance, in 2005-2009, artisanal gold mining activities 

are positively associated with migration in the Western region, attracting workers in the areas, and 

negatively associated with migration in the North-East areas, pushing people to leave.  

Our contribution to the literature on climate migration is twofold. First, from a methodological 

perspective, our approach founds the complementary of the three geo-spatial methods. While the 

geospatial regression quantifies the spatial variability of the system (places that are closer have 

potentially higher interactions), the multiscale geospatial regression measures, though the 

bandwidth indicators, how each factor (as explanatory variable of the system) is differently 

associated with migration across space. Then, we use the machine learning approach to validate 

the predictive ability of the spatial system in terms local goodness. Second, our analysis gives 

empirical evidence on how environmental and climate conditions, acting in combination with other 

political and socio-economic factors, alter local systems and in turn influence migration behaviors 

over time. These insights into the complex relationship between slow-onset climate conditions and 

migration at local level would support the definition of tailored-design public actions and enhance 

the coordination of political decision-makers at international, national, and local levels. 

ENVIRONMENTAL AND CLIMATE MIGRATION IN GHANA 

Environmental and climate factors have been identified in multiple previous studies as having 

effects on migration patterns in Ghana. It has been widely documented that members of households 



that depend on subsistence agriculture in the rural north have high rates of migration to urban and 

rural areas in the comparatively wetter central and southern parts of the country (Kuuire et al 2016, 

Luginaah et al 2009, Teye et al. 2015, Schraven and Rademacher-Schulz 2016, Sow et al 2014, 

van der Geest et al 2010, van der Geest 2011). Districts that have relatively high levels of 

outmigration tend to be those with the least vegetation cover and/or suffer from land degradation, 

with out-migrants from these areas often destined for regions to the southwest where cocoa 

plantations offer employment or to artisanal gold fields in the west of the country (van der Geest 

et al 2010, Nyame and Grant 2014). Such moves are increasingly being initiated during in the rainy 

season, which differentiates them from circular patterns of remittance-seeking out-migration 

during the dry season and subsequent return that has been practiced in the north for generations to 

maintain household food security (Rademacher-Schulz et al 2014, Schraven and Rademacher-

Schulz 2016). In recent decades, Northern Ghanaian farmers report being motivated to relocate 

indefinitely to more productive areas of the country because of poor soil conditions, growing 

climate issues, and a scarcity of good quality land in their home region (van der Geest 2011). Rural 

population growth rates in northern Ghana have been relatively high in recent decades which, 

coupled with highly variable rainfall patterns, contributes to the growing pressure on productive 

land and consequent land degradation (Sow et al 2013). Environmental factors acting in 

combination with economic and social factors have been identified as contributing to household 

migration decisions in other parts of Ghana as well. For example, past studies have identified flood 

hazards as being an important driver of displacement and migration in the Volta River delta 

(Codjoe et al 2017); shifting precipitation patterns, deforestation and land degradation a factor in 

out-migration from rural villages in southern Ghana (Carr 2008); and, changing maritime 

conditions and the health of fish stocks have created growing populations of migrant fishers in 

coastal Ghana (Asiedu et al 2022). 

In the case of slow-onset environmental conditions, there is usually a set of overlapping political 

and socioeconomic factors at play that shape changes in migration behaviours (Olaniyan et al., 

2015). For instance, conflicts emerging from land tenure disputes have a history of displacing 

people and leading to migration in Ghana. Studies suggest that conflict often ensues between 

pastoralists (such as Fulani herders) and various farming communities, arising from crop 

destruction caused by stray cattle (Baidoo, 2014; Issifu et al. 2022). Various hotspots of farmer-

herder conflict are observed throughout Ghana, with violence in Agogo in the Ashanti Region 

(Appiah-Boateng and Kendie, 2022), as well as tensions and movements in northern Ghana and 

the Volta basin (Tonah 2000, Tonah 2006) as herders seek viable lands for cattle. Nevertheless, in 

1992 the established democratic assessment helped the achievement of a political stability 

characterized by limited protest and conflict events. In addition to conflict, economic factors are 

considered as drivers of migration in the Western-African region (Flahaux and De Haas, 2016). As 

one of prevalent and long-established sectors, gold mining activities have served livelihoods and 

profits for Ghanian families and governments (Chuhan-Pole et al. 2015; Hilson 2002). Since 1987, 

Ghana experienced its fourth gold era (Amankwah and Suglo, 2003), benefiting from improved 

exploration and processing techniques that revolutionized the gold mining industry. Yet, the drop 

of gold prices on the global market in 2000s determined the closure of several mines in Ghana, 

reducing the number of large-scale companies mainly concentrated in the areas of Ashanti (Gbireh 

et al. 2009). Since 2005, Ghana has experienced a resurgence of gold rush, with an increasing 



number of small mining companies that operate in the sector and attract internal and international 

workers (Botchwey et al. 2019). This new gold rush has been associated with the increase of 

international migrants to undertake artisanal and small-scale mining, largely reserved for Ghanaian 

citizens (Minerals and Mining Act 2006), with most of them moving from China (Teschner, 2012; 

Hilson et al., 2014; Crawford and Botchwey, 2017). These Chinese immigrants in Ghana have 

been engaged in artisanal (small scale company) gold mining, by introducing new machinery and 

technologies that have significantly increased gold production while their activities have 

stimulated the local markets (Botchwey et al. 2019). This new wave of artisanal mining has also 

resulted in the movements of people from surrounding communities to work, directly or indirectly, 

in the mining sector. Nonetheless, the presence of foreign miners has frequently resulted in conflict 

with the local artisanal ones (Botchwey et al. 2019): foreign miners were accused of displacing 

and outcompeting local alluvial gold miners, contributing to pervasive corruption, and stealing 

Ghanaian mineral resources through gold smuggling (Abid et al., 2013). The expansion of artisanal 

mining has resulted in major environmental deterioration, such as the contamination of large water 

bodies, which are the primary source of livelihood for local communities, and the increase of 

outmigration for those who can afford to move (Hilson et al. 2014; Botchwey et al. 2019).  

DATA 

To carry out the analysis, we collect the following datasets: i) net migration estimates; ii) 

environmental and climate conditions; iii) conflict events; iv) artisanal gold mining activities. Each 

variable is harmonized at 25km2, covering the period from 1985 to 2014. 

i) The net migration estimate dataset (Alessandrini, Ghio, Migali, 2020) is overlaid across Ghana. 

The spatial grid includes cells that are centered within the country of Ghana and do not overlap 

with cells centered within neighboring countries; grid cells located along coastal areas are 

inspected for completeness, and the total number of grid cells centred along the coast are adjusted 

to include areas that when harmonized, allow capturing of non-zero values of both dependent and 

independent variables. National geographical regional boundaries of Ghana are used to identify 

and describe areas in addition to harmonized data; although, regional boundaries were changed in 

2018, hence our analysis and visualizations refer to the previously established 10 regional borders 

from 2013-2017 (Ghana Statistical Service, 2010).  

ii) Ghana exhibits unique environmental conditions, which include both arid zones and tropical 

rainforests, enabling the study of different climate variables in relation to net migration (Dinerstein 

et al., 2017). Using the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) 

(Funk et al., 2015) and the Climate Hazards Group Daily Temperature (CHIRTS) (Funk et al., 

2019), we derive the following climate change indicators: a) Precipitation, meaning 5-year mean 

annual precipitation (PREC); b) Maximum length of consecutive dry days in one year, where rain 

is less then 1 mm, calculated from CHIRPS total gridded rainfall, and averaged over five years 

(MLDS); c) Maximum length of consecutive wet days in one year, where rain is greater than or 

equal to 1 mm, calculated from gridded rainfall, averaged over five years (MLWS); d) Average 

daily maximum temperatures, averaged to 5-year intervals (TMAX); e) Average daily minimum 

temperatures, averaged to 5-year intervals (TMIN).  



iii) We analyze data on significant conflict events and related fatalities recorded at geo-point 

locations (CONFL) by the Armed Conflict Location and Event Data Project (Raleigh et al., 2010) 

and Uppsala Conflict Data Program (UCDP) Georeferenced Event Dataset (Sundberg et al., 2013).  

iv) For the period 2005-2014, we rely on the database provided by the College of Earth Sciences, 

Chengdu University of Technology and the School of Geography, Earth and Atmospheric Sciences, 

Faculty of Science, University of Melbourne (Tang & Werner, 2023). The datasets are derived 

from the high-resolution satellite imagery for the years, 2008, 2013), which identifies the areas of 

artisanal small scale gold mining activities in Ghana (MINING).  

Table A-1 in Appendix summarizes the selected variables. 

METHODS 

We model the changes in the dependent and independent variables over each 5-year interval, from 

1985 to 2014, as follows: 

 

𝑥(𝑖,𝑡+1,𝑡) =
𝑥𝑖,𝑡+1 − 𝑥𝑖,𝑡

𝑥𝑖,𝑡
 

𝑥(𝑖,𝑡+1) is the value of the variable x for the grid (i) at the time (t+1); 𝑥𝑖,𝑡is the value of the variable 

x for the grid (i) at the time (t) 

A three-step approach is applied to develop the analysis. First, the Geographically Weighted 

Regression (GWR) is used to assess the spatial variations by the estimates of local parameter 

effects by geographical unit, as follows: 

𝑦𝑖 = 𝛽𝑜(𝑢𝑖+ 𝑣𝑖) + ∑ 𝛽𝑗 (𝑢𝑖+𝑣𝑖) 𝑥𝑖𝑗 + 𝜖𝑖 

 

𝑦𝑖 is the change in the net migration for the grid i, whose centroid has the coordinates (𝑢𝑖+𝑣𝑖), 𝛽𝑜 

is the local estimated intercept and  𝛽𝑗 represents the effects of the variable at local level.  

The Gaussian weighting function is used to account for the spatial influence of the neighbouring 

territories (grids).  

Second, we adopt the Multiscale Geographically Weighted Regression (MGWR), proposed by 

Oshan and colleagues (Oshan et al. 2019). The method has been recently adopted in different fields 

of social science research due to its flexibility to process spatial heterogeneity at different scales 

(Fotheringham 2017). Indeed, the main advantage of using MGWR consists of removing the 

spatial non-stationary condition and differentiating the local effects by each dependent variable. 

This means that a covariate-specific bandwidth is estimated (Yu and Fortheringham, 2020), as 

formally explained by the following equation: 

𝑦𝑖 =  ∑ 𝛽𝑏𝑤𝑗 (𝑢𝑖+𝑣𝑖) 𝑥𝑖𝑗 + 𝜖𝑖 

𝛽𝑏𝑤𝑗  corresponds to the bandwidth resulting from the application of a spatial weighting kernel 

for estimating 𝑥𝑖𝑗 , namely the predictor j of the variable 𝑥𝑖 . The bandwidths are selected through 

a back-fitting algorithm to optimize the expected log likelihood (Oshan et al., 2019). We apply an 

adaptive Gaussian function to deal with the spatial distribution of observations. A Monte Carlo 



approach is used to check the nonstationary conditions for each variable (Fotheringham, Brunsdon, 

and Charlton, 2002). 

Finally, we adopt a recent variation of forest model (Georganos et al., 2021, Georganos and 

Kalogirou, 2022), the Geographically Weighted Random Forest Regression (GWRF). The GWRF 

disaggregates the traditional forest model (Breiman, 2001) into multiple local models to 

highlighting important local variations and enables studies on the spatial heterogeneity of the data 

(Nduwayezu et al., 2023). Random Grid Search (RGS) is used to find the optimal hyperparameter, 

and the optimal bandwidth is determined by minimizing the Out of Bag (OOB) error and the mean-

squared error (RMSE) to check and rank the endogenous explanatory factors underlying migration 

(Schutte et al., 2021). The relevance of each variable describes the associated increase in RMSE: 

high importance denotes high explanatory power in the model, while negative importance indicates 

that the variable weakens the model’s prediction power. The relative importance (RI) indicates the 

rank of how well a given factor predicts net migration in relation to the highest one (which 

corresponds to a RI=1). 

To compare the models and assess their complementary to depict the spatial variation of the 

relationship among the selected variables (Fotheringham, Brunsdon, and Charlton, 2002), we use 

the Akaike Information Criterion (AIC) (Akaike, 1974) and the goodness-of-fit measures (R2).  

NET MIGRATION PATTERNS ACROSS GHANAIAN TERRITORIES  

Examining 5-year periods for net migration in Ghana from 1985 to 2014 (Figure 1), we identify 

three main patterns: i) urban pathways in the south coastal areas; ii) persistence of the north-south 

regional differential over time; iii) changes in migration dynamics in the Western and Volta regions 

over 2000-2014 interval. 

Figure 1 

Net migration, 1985-2014  



 

 

 

 



i) urban pathways in the south coastal areas 

Over almost all intervals, the coastal cities of Sekondi, Cape Coast, Winneba, and Accra (the 

capital) recorded a growth of net migration. This tendency is present for the main cities in the 

southern area of Ghana, including Ho, located in the Volta region. Looking at other regions, the 

city of Kumasi, which hosts a large domestic airport, stands out for being one of the rare areas in 

the region of Ashanti recording positive trends of net migration. Despite the city recording the 

largest deficit of net migration in the early 1980s, since the year 2000 it has reported the highest 

positive net migration values in the country - in contrast with migration losses in the municipal 

district of Obuasi, located in the same Ashanti region. This district located south-west of Kumasi, 

is also the centre of a large-scale gold mining company. On the contrary, several cities in the 

Northern region record different patterns of migration. For instance, Tamale, a large city in the 

north, exhibits net-negative migration estimates across all 30 years of study. Its neighbouring 

district to the east, the municipal district of Yendi, which is closer to the international border with 

Togo, has net-positive migration even in a smaller population setting. As a result, Tamal hosts a 

higher intensity of movement while surrounding areas, though positive, may not play as substantial 

a role in the larger north-to-south patterns. This net migration trend is seen in both the regional 

differential and urban pathways. These dynamics depict a general increase of net migration into 

coastal Ghanaian cities over the period 1985-2014, as confirmed by qualitative studies: for 

instance, younger siblings can emigrate to urban areas, while older ones are compelled to stay in 

the parents’ rural households and continue agriculture activities (Yeboah 2018). 

ii) persistence of north-south regional differentials 

Where it concerns the northern regions (Brong Ahafo, Northern, Upper West, and Upper East), 

trends seem to split. While the Brong Ahafo and Northern regions maintain a core of negative net 

migration near major cities, the intensity of net-positive migration surrounding these urban areas 

varies over time. Qualitative studies looking at female internal migration denote out-migration 

from the Upper East, Upper West, Northern, Volta, and Central Regions, with no significant in-

migration between 2000 to 2010 (Lattof et al., 2018). Migration pathways, though gendered, 

persist as northern regional differentials. The net migration estimates in the outer edges of these 

northern regions, near the border between the Upper West region and the Northern Region, 

encompassing Mole National Park, are not recognized until the early 2000s. Other conservation 

reserves are scattered around Ghana but are much larger in the more northern regions. The two 

outermost regions near the Burkina-Faso border, Upper West, and Upper East, have a trend of 

negative net migration which is dominant over time. The capital of the Upper West region, Wa, is 

persistently negative, with a trend of regional loss increasing over time - especially in the 2000s. 

The further north the regions are located, the closer they are to the arid climate of the Sahara, with 

the Upper East, Upper West, and Northern regions classified as savannas and shrublands. 

Differences between the northern and southern regions have deep colonial roots, with the colonial 

era being a time when migrants moved from the poorer regions in the north to the more resource 

rich south where capitalist exploitation and economic exports began to flourish (Songsore, 2011). 

Ghana’s plethora of gold and mineral extracts enhance these differentials particularly in the 

Western region. 



iii) changes in migration dynamics in the Western Region and Volta Regions 

The Western and Volta regions present unique migration dynamics. With the exception of urban 

areas, the largest swathes of out migration (negative net migration) are reported in the Western 

region, from 1985 to 2000, as recorded in the neighbouring regions of Ashanti, where in 2002 few 

large-scale gold mining companies remained active (AngloGold Ashanti, with mines at Obuasi; 

Iduapriem, with mines in the areas of Tarkwa and Bibiani; Bogoso Gold, located in zone of 

Bogoso; Gold Fields Ghana Ltd, with mines at Tarkwa and Abosso; Sian Gold Mines, in 

Nkawkaw; Resolute Amansie in Amansie; Bonte Gold Mines in Nkawie-Toase and Prestea 

Sankofa Gold in Prestea). A trend of net-negative migration is also exhibited in the Eastern Region. 

A qualitative study of the 2010 Ghanaian Census reported from the year 2000 – 2010, 

approximately 17% of Ghana’s total female out-migrants were emigrating from the Eastern 

Region, followed by the Northern and Volta Regions (Lattof et al., 2018).  The Eastern region net 

migration estimates consistently show losses throughout the decades with only a dwindling area 

reporting growth on its border with Ashanti. These activities highlight a series of regional pathways 

more unique than just the rural-urban or north-to-south dynamics. Rural-urban pathways can still 

be seen within the Western and Eastern regions as there is high negative migration in local rural 

areas and high positive migration shown in the neighbouring coastal urban cities, such as Sekondi, 

Cape Coast in the Western Region and Accra, being located south of the Eastern region.  

Another unique regional pattern is that the Volta as one of the regions experiencing the highest loss 

of migration. The Volta region, depicted by the pre-2016 regional boundaries, starts at the south 

Gulf of Guinea and extends north along the east Lake Volta coast reaching the Oti River. Variations 

of net migration trends exist when examining the region from north to south; with the north near 

the Oti River having net-negative migration over different time periods, a similar negative trend 

moving southward towards the centre of the region until reaching the city of Ho which depicts 

more positive migration patterns. Lastly the most southern point of the region is home to the coastal 

towns, namely the city of Keta. According to the previous studies, the city of Keta has been 

experiencing severe environmental changes for several decades now, i.e. coastal erosion and flood, 

originating the emigration of the Ewe population (Hillmann et al., 2019). Policies have supported 

large-scale industrial development throughout the region (Akeampong, 2001) with significant 

consequences in terms of land degradation due to deforestation and disappearance of clam fishing 

and other traditional agricultural activities, often accompanied by the increase of out-migration 

flows, highlighting the Volta as a pathway of migration. The decrease of net migration reported in 

latest period of the analysis would be explained by the Ebola infection limiting mobility within 

and between countries. 

ENVIRONMENTAL AND CLIMATE FACTORS  

We explore the environmental and climate conditions related to the net migration patterns 

identified by the descriptive analysis, as follows:  

i) urban south coastal areas 

Cities with a prevalence of positive net migration report a decrease in mean precipitation and the 

length of consecutive wet days, and an increase in the length of consecutive dry days, minimum 



and maximum temperature, apart from Ho, which records a drop of the max temperature (Table 

1). Among cities with a prevalence of net migration, changes in the environmental conditions from 

1985-1999 to 2010-2014 are less uniform. Although the mean precipitation declines, the changes 

(in %) is lower than for the cities with a positive net migration, while the changes in the length of 

the consecutive wet days is higher, ranging from -52% in Bolgatanga to 22% in Obuasi. This higher 

variability is also depicted for the other variables. For instance, Tamale records a decrease in the 

length of consecutive dry days (-12% comparing the period 2010-2014 with the period 1985-1999) 

accompanied by an increase (2%) of both minimum and maximum temperatures. By contrast, 

Sunyani records an increase in length of consecutive dry days (21% comparing the period 2010-

2014 with the period 1985-1999) and a decrease in all other variables, the length of consecutive 

dry days, minimum and maximum temperatures (-1%, and -4% respectively). 

Table 1 

Net migration and climate conditions in selected Ghanian cities, 1985-2014 

 

Net 

migration  

Main cities Period Mean 

precipitation 

(mm) 

Wet days 

(count) 

Dry days 

(count) 

Max 

temperature 

(C) 

Min 

temperature 

(C) 

Positive 

 

 

 

 

 

 

 

 

 

Accra 1985-89 791.6 5.4 28.6 34.43 19.24 

 2010-14 725.2 4 35.4 35.47 21.56 

Sekondi 1985-89 1428.2 9.6 24.6 33.40 20.91 

 2010-14 1209.2 4.4 36 34.70 21.87 

Cape Coast 1985-89 1017.8 7 28.2 33.56 20.49 

 2010-14 878.4 4.4 31.6 35.02 21.66 

Winneba 1985-89 947.6 6.6 28.4 34.07 18.27 

 2010-14 870.8 4.8 32.6 35.10 20.35 

Ho 1985-89 1406.8 9.6 25.4 39.06 20.64 

 

 

2010-14 1223.6 5.2 26.8 38.32 21.83 

 

Negative 

 

 

 

 

 

 

 

 

 

 

 

Bolgatanga 1985-89 989.2 8.4 64.2 43.16 15.71 

 2010-14 960.8 4 66.2 43.01 15.96 

Wa 1985-89 1003.4 7 55 41.51 15.14 

 2010-14 966.2 5 57 40.92 15.14 

Tamale 1985-89 1177.6 7.2 58.6 41.16 17.29 

 2010-14 1072.8 5.8 51.6 42.07 17.69 

Sunyani 1985-89 1250.6 6.8 31.6 38.59 16.46 

 2010-14 1117.4 8.2 31.4 38.12 15.85 

Keta 1985-89 1084.2 6.2 34.6 35.89 21.12 

 2010-14 998.2 3.6 38.6 36.99 22.58 

Obuasi 1985-89 1358.4 9 29.8 37.77 16.23 

 2010-2014 1279.8 11 39.4 37.81   17.68 

 

ii) northern regions 

Differences in environmental patterns persist across the northern and southern regions when comparing 

1985-1999 and 2010-2014 periods. Northern regions are classified as tropical and sub-humid zones, with 

high reported levels of land degradation. Over both periods, within the country, the mean of annual rainfall 

increases traveling southward from the northern Upper West and East regions to the Western coastal regions. 

The scarcity of precipitation in the north, may be considered as one the prime drivers of environmental 

degradation, when associated with the high maximum temperature and prolonged periods of dryness. 



Higher variability of precipitations can be observed in the Upper East region. For instance, the area of 

Bolgatanga, is influenced by the convergence of two air masses: the continental and dry air mass, which 

extends over the Sahara and generates the Trade Winds of harmattan; and the tropical air mass, originating 

from the South-Atlantic anticyclone and which is associated with the south easterly winds, which accentuate 

the rainy seasons in Ghana. The convergence of these two air masses can explain the differences in the 

rainfall trends of the area (Dietz et al. 2004). 

Figure 2 

Climate conditions in Ghanian Upper West, Upper East and Northern Regions, 1985-1989, 2010-2014 

1985-1989 2010-2014 

Precipitation (mm) 

  

Length of consecutive dry days (count) 

  
Maximum temperature (°C) 



  

 

iii) Western and Volta Regions 

For the Volta basin, the increase of temperatures in combination with the decrease of rainfall have 

generated detrimental effects of land erosion. Several anthropogenic environmental hazards have 

occurred in the area, including the Keta coastal regions (Torvikey, 2014). Authors have stressed 

impacts of the dams’ construction in the region (i.e. Akosombo Dam), contributing to deforestation 

and loss of arable lands. Furthermore, the slowing down of the river and high temperatures may 

have facilitated the spreading up of infectious diseases (such as malaria), as documented by Ewe 

and Ada fishermen who emigrated from the endemic areas of the Volta (Akyeampong 2001; 

Tsikata 2006). 

Figure 3 

Climate conditions in Ghanian Western and Volta Regions, 1985-1989, 2010-2014 

1985-1989 2010-2014 

Minimum temperature 



  

 

INTERPLAYS BETWEEN NET MIGRATION AND ENVIRONMENTAL FACTORS  

The GWR models reveal no significant association between the changes in net migration and 

environmental variables in the periods 1990-1999 (Table A-2 in Appendix). In 2000-2004, the 

GWR model shows that the mean of annual maximum temperatures is significantly associated 

with the changes in net migration (Table A-3 in Appendix), but coefficients vary across territories. 

When mapping the significant coefficients of co-variants over the period 2000-2014 (Figure 4), 

the variability across Ghanaian territories can be appreciated. It is worth to note that, rather than 

in terms of causality, the coefficients presented here should be interpreted as signals of the positive 

and negative relationships between the dependent and independent variables. In line with the scope 

of the analysis, the estimated coefficients offer indicative assessments of the role played by each 

factor on the changes of net migration at local level, in the context of the defined models. 

Over the period, in the Upper East and Northern-East regions, variability in the mean of annual 

maximum temperatures is positively associated with net migration, meaning that the increase of 

maximum temperatures is related to the increase of net migration. It should be noted that the 

positive effects on the net migration may consist of a raise of the positive net migration, when 

influx exceeds out-movements, or a narrowing of the negative net migration, when out-movements 

exceed influx. Contrarily, in Southern-Western regions, changes in the maximum temperatures are 

negatively related to changes in net migration: when the mean of maximum temperature increase, 

the net migration decrease, which may correspond to a decrease of the positive net migration or an 

increase of migration deficit, when out-movements exceed influx. 

The model MGWR confirms the significance of the maximum temperatures when limited to the 

areas of Ho, in the Southern East, Sekyare Afram Plains, in the Ashanti area, the Mamprugu 

Moagdari district, and Yendi in the Northern-East region (Table A-4 and A-5 in Appendix). In this 

latter, changes in the length of consecutive wet days are also significant, but negatively associated 

with the changes in net migration. 



Figure 4 

GWR and MGWR model significant results, period 2000-2004 
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In 2005-2009, both GWR and MGWR models attest the relevance of the small company gold 

mining activities in the interplays between environmental conditions, conflict fatalities and net 

migration. Nevertheless, results from the two models differ when examining the spatial variability. 

Based on the MGWR model results (Table A-5 in Appendix), in the Upper East region, the small 

company gold mining effects are negatively related to the change of net migration, whereas in the 

Western and Central regions the effects are positive, while the GWR model extends the area of 

incidence to the Greater Accra and Eastern coastal areas (Figure 5). Similarly, when examining the 

environmental variables, the GWR results present a significant and positive incidence of the length 

of consecutive wet days in the Western region, while the MGWR limits the effects to Dunkwa, 

Obuasi, Akim and Oda, main spots of the small company gold mining activities. Following the 

MGWR results, the negative association with the changes of net migration is restricted to the 

Krachi West district, rather than the whole Eastern area of the Northern region (Togo’s borders) 

identified by the GWR. Furthermore, in the Western areas of the Northern region (Ivory coast’s 

borders, around the Bui National Park), the GWR model results reveal significant relationships 

between the changes in net migration and the 5-year mean of precipitation. 



Figure 5 

GWR and MGWR model significant results, period 2005-2009 
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Finally, when examining the latest period 2010-2014, both GWR and MGWR models identify a 

significant correlation between the length of consecutive wet days with the changes in net 

migration. As for the previous periods, the spatial variability of MGWR is much more restricted. 

The MGWR model identifies the significant and positive association in the area of the Oti river, 

and Winneba and Akim Oda in the south-coastal region, whereas the GWR model also finds 

significant the south-eastern areas of the Northern region (Figure 6). 

Figure 6 

GWR and MGWR model significant results, period 2010-2014 
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ROBUSTNESS CHECKS 

As final step, we apply the Geographically Weighted Random Forest (GWRF) using Gaussian model 

fitting and fixed kernel bandwidth estimations. To check results from previous models, the GWRF 

are separately performed for the time intervals 1990-1999 and the time intervals of the 2000-2014. 

The estimated model fits for 1990-1999 have very small explanatory power, in line with results 

achieved using GWR and MGWR models (Table A-6 in Appendix). GWRF models are trained 

again with data for the 5-year intervals 2000-2004, 2005-2009 and 2010-2014.GWRF models 

delineate the importance of each variable within a single model. Table A-7 in Appendix shows the 

dependent variables ranked by importance. Importance values are displayed as percent totals, with 

higher importance indicating total percent of the model estimations explained by which variable. 

In the 2000-2004 interval, maximum temperature (TMAX) had the highest importance. In 2005, 

gold mining held the highest importance, but all variables had relatively low distributed values of 

importance. The maximum number of wet days held the highest importance in 2010-2014 with 

length of consecutive wet days (MLWD) having almost 50% relative importance compared to 

other variables. Measures of conflict held the lowest importance throughout all years, close to zero, 

from 2000 to 2014.  

 

In addition to the relative importance of the explanatory variables, each variable has geographic 

distributions characterized within each model. Local R-squared values were mapped for each 

GWRF model calculated for each time interval in the 2000’s. The local estimations for each 

variable with high levels of importance, within each time interval are also mapped. In 2000-2004, 

maximum temperature achieves the highest importance. Spatially, estimates of importance are 

spread and variable throughout Ghana. The estimations of small-artisanal gold mining activities 

that achieve a higher importance in 2005-2009, shown a clearer pattern with negative correlations 

in the north and positive estimations in the south, particularly in the Western and Central Regions. 



The maximum length of consecutive wet days similarly to maximum temperature do not hold a 

clear pattern of importance but reach a high level of importance in the model in 2010-2014. 

 

Spatial incidence and models’ complementary 
 

From a spatial perspective, the bandwidth is an indication of the spatial scale of incidence. Both 

GWR and MGWR attest the spatial no stationary of the local coefficients, but while the GWR 

presents a general model variability, the MGWR gives estimates of variability in the scale 

(bandwidth) by regression coefficient. When the adaptive kernel is adopted, the bandwidth offers 

the estimated number of the nearest places (the neighbours) from the regression point i, which 

receives a non-zero weight in the local regressions (the ones which are considered as neighbours 

to i) (Oshan et al., 2019). Yet, in our study, Gaussian weighting function is selected to also include 

neighbours that may be located far from the regression point. We argue that the dependent variable 

results from the combination between internal and international mobility; thus, no place may be 

excluded a priori from the analysis. The selection of the optimal bandwidth parameters is based on 

statistical optimization criteria (Akaike Information Criteria, Yu et al. 2020). 

In the period 2000-2004, the lowest bandwidth values are reported by the maximum temperature 

and length of consecutive wet days, both recording a significant association with the change of net 

migration, meaning that the spatial scale where the effects of the variables operate on the dependent 

variable is local or limited to selected areas that are geographically smaller than the whole country. 

Similarly, it occurs in the period 2005-2009 for the small company gold mining, whereas in 2010-

2014 this is exclusively for the length of consecutive wet days. Spatial estimations from the GWR 

had a global model fit with local significance as global models provide less distinction between 

the influence of each variable spatially. The MGWR provides greater distinction of each variable 

spatially as it estimates bandwidths per variable. GWR and GWRF both only provide one 

bandwidth per model. GWRF provides validation of both GWR and MGWR as it relaxes Gaussian 

assumptions and splits data to training sets that are used for analysis.  

 

TABLE 2 

Models’ indicators, 2000-2014 

 

Time 

Interval 

Geographic 

Weighted 

Regression 

GWR 

Multiscale 

Geographic Weighted 

Regression 

MGWR 

Geographically 

Weighted Random 

Forest Regression 

GWRF 

  R-square AIC R-square AIC R-square AIC 

2000 - 2004 0.056 1085 0.718 870 0.138 1829 

2005 - 2009 0.152 1068 0.432 1006 0.124 2230 

2010 - 2014 0.492 998 0.677 815 0.200 1503 



The MGWR outperforms the other models in terms of R-square and AICs values. The period 2000-

2004 records the highest R-square values, followed by the period 2010-2014, implying that the 

model has a god explanatory power (71% and 68% respectively). 

The machine learning GWRF applied using the global model, establishes predictions of the data 

and then decides the optimal parameters needed to describe the model. This approach works best 

with larger datasets and the low number of values used in this analysis restricted the GWRF. Both 

GWR and MGWR provide standardization of values which could not be established in the GWRF 

to predict and estimate values of the explanatory variables. When comparing the outputs of all 

models, the machine learning GWRF, estimated the relative importance of each variable while 

GWR and MGWR provided local measures of significance of each variable. Statistically these are 

not comparable outputs, but these measures show the relevance of each variable within their 

respective models. Maximum temperature consistently showed relevance throughout each model 

for the time interval 2000-2004. The multiscale geographic weighted regression was the only 

model in 2000-2004 that showed local significance for consecutive wet days. The artisanal gold 

mining showed relevance in all models for 2005-2009. The length of consecutive wet days shows 

significance in both local and global regression models but no importance in the estimates from 

the GWRF. Precipitations are significance in the global geographic weighted regression but not 

enough power to be significant in the local MGWR model or the GWRF. None of the models 

predict the length of consecutive dry days, minimum temperature, and conflict variables as 

relevant. 

Finally, we examine the standardized residuals, which provide clearer spatial patterns as they are 

measures of the strength of the difference between observed and expected values. Residuals were 

mapped per model, by period (Figure A-1 in Appendix). The local residuals for each model that 

are also mapped and isolated by period, with each model showing slight differences in the outliers 

identified however some grid cells remain consistent in the GWR, MGWR and GWRF. Spatial 

patterns are more evident per period even with differing models. In 2000-2004, the residuals 

remain more consistent in pockets in the north with a cluster near the city of Yendi and specific 

grid cells in the south such as near the city of Ho, in the Volta. The 2005-2009 interval has the 

most scattered pattern of residuals however the highlighted cells remain consistent for all three 

models. The 2010–2014 interval has the most distinct pattern for the GWR and MGWR, with 

residuals in three places, the most northern point of the Volta region, one grid cell in the Eastern 

Region and another in the Central region while the GWRF also highlights these areas in addition 

to more scattered outliers such as in the coastal cities of Winneba and Keta.  
 

CONCLUSIONS (preliminary) 

The analysis reveals the relevance of environmental and climate conditions in the spatial patterns 

of migration across the Ghanian territories, from 2000 to 2014. Using three spatial models, we 

map the links between migration and contextual factors, developing and testing a new analytical 

approach that explain the interplay among migration drivers. Findings would contribute to refining 

the conceptualisations of environmental and climate conditions as drivers of migration and 

population changes across territories, giving new insights for rethinking mobility in the frame of a 

more complex, nuanced processes influencing (in)voluntarily trapped populations. 

Although the combination of three spatial models provides cross-validation of results, the approach 

is not exempt from limitations, mainly due to data availability. For instance, the lack of distinction 



between internal and international migration flows; the periodicity (by 5-year interval) of the 

analysis and the absence of disaggregation by age and sex.  

To fill these gaps, the study would be the basis for designing qualitative surveys in the regions, as 

part of the Complex Migration Flows and Multiple Drivers in Comparative Perspective (MEMO), 

a project funded by the Social Sciences and Humanities Research Council of Canada. Combining 

quantitative and qualitative analyses, MEMO aims to support the development of more adequate 

and efficient policies and practices to help individuals’ decision to improve their ability to move, 

as well as to remain, despite the impacts of harsh environmental conditions. 
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APPENDIX 

Table A-1 

Selected variables, definition, temporal and spatial coverages 

 

Name Descriptions - Method Spatial 

Coverage 
Temporal 

Coverage 
Source 

Net Migration 

Estimates 
Gridded indirect estimation of five-year net 

migration, derived from JRC Global Human 

Settlement population layer with applied 

degrees of urbanization coefficients 

25x25 km2 1975 to 

2015 
Joint Research Centre (JRC) – 

Knowledge Centre on 

Migration and Demography 

(KCMD) 2020 JRC 

Publications Repository - 

Estimating net migration at 

high spatial resolution 

(europa.eu) 

 

PREC 

 

Precipitation - 

Average of 5 

years 

Gridded rainfall, total amount of 

precipitation, over one point coordinate 

location summed for one year; then averaged 

over five years. 

0.05° degrees, 

approx. 

5x5km2 

 

1981 - to 

near present 
Climate Hazards Group 

InfraRed Precipitation with 

Station Data Version 2.0 

(Chirps) CHIRPS: Rainfall 

Estimates from Rain Gauge 

and Satellite Observations | 

Climate Hazards Center - UC 

Santa Barbara (ucsb.edu) 

 

MLDS 

(Maximum 

Length of Dry 

Days) 

The maximum length of consecutive dry 

days in one year, where rain is less then 1 

mm, calculated from CHIRPS total gridded 

rainfall, averaged over five years.  

0.05° degrees, 

approx. 

5x5km2 

 

1981 - to 

near present 

 

CHIRPS API Compute 

precipitation indices over a 

time series. — precip_indices 

• chirps (ropensci.org) 

 MLWS 

(Maximum 

length of Wet 

Days) 

The maximum length of consecutive wet 

days in one year, where rain is greater then 

or equal to 1 mm, calculated from gridded 

rainfall, averaged over five years.  

0.05° degrees, 

approx. 

5x5km2 

 

1981 - to 

near present 
CHIRPS API Compute 

precipitation indices over a 

time series. — precip_indices 

• chirps (ropensci.org) 

TMAX 

 

Average Tmax 

(Temperature 

Max) 

High-resolution (0.05° x 0.05°, approx. 

5km) data set of daily maximum 

temperatures. At each point location, the 

daily maximum temperatures collected and 

the highest value of the year, was used, then 

averaged to 5-year intervals.  

0.05° degrees, 

approx. 

5x5km2 

 

1983 - 2016 

 

Climate Hazards Group Daily 

Temperature data set. 

Utilizing Version 1.0 

Africa  CHIRTSdaily | 

Climate Hazards Center - UC 

Santa Barbara (ucsb.edu) 

 

TMIN 

 

 

High-resolution (0.05° x 0.05°, approx. 

5km) data set of daily minimum 

temperatures. At each point location, the 

daily maximum temperatures collected and 

0.05° degrees, 

approx. 

5x5km2 

1983 - 2016 Climate Hazards Group Daily 

Temperature data set. 

Utilizing Version 1.0 

Africa  CHIRTSdaily | 

https://publications.jrc.ec.europa.eu/repository/handle/JRC121003
https://publications.jrc.ec.europa.eu/repository/handle/JRC121003
https://publications.jrc.ec.europa.eu/repository/handle/JRC121003
https://publications.jrc.ec.europa.eu/repository/handle/JRC121003
https://publications.jrc.ec.europa.eu/repository/handle/JRC121003
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https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
https://docs.ropensci.org/chirps/reference/precip_indices.html
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https://www.chc.ucsb.edu/data/chirtsdaily


Average Tmin 

(Temperature 

Minimum) 

the highest value of the year, was used, then 

averaged to 5-year intervals.  
 Climate Hazards Center - UC 

Santa Barbara (ucsb.edu) 

 

CONFL 

 

 

Conflict 

Fatalities 

 

 

Significant conflict events were recorded as 

geo-point locations for each dataset. The 

highest recorded fatality estimate per event 

was used. Events were intersected with AOI 

~25 km grid and the sum of fatalities per 

event was used, when multiple events were 

recorded per grid cell across multiple years, 

within each 5-year interval.  

georeferenced 

event 

coordinates 

 

1989 to 

2015 
Armed Conflict Location & 

Event Data Project (ACED) 

and Uppsala Conflict Data 

Program (UCDP) 

Georeferenced Event Dataset 

(GED) 

ACED: ACLED | Bringing 

Clarity to Crisis 

(acleddata.com) 

GED: UCDP - Department of 

Peace and Conflict Research - 

Uppsala University, Sweden 

(uu.se) 

 

MINING 

 

 

 

Gold - 

Artisanal 

mining 

activities in 

Ghana per 

km2 

 

 

Database of polygons delineated from high 

resolution satellite imagery was used to 

identify areas of artisanal small scale gold 

mining activities in Ghana. Dataset contains 

74,548 polygons, covering ~66,000 total 

square kilometers globally derived from 

multiple years (2008, 2013, 2021) of 

imagery. 1,787 polygons were intersected 

with the 25x25 km grid over Ghana. The 

total area of all mines that intersected with 

one grid cell, was divided by the total area of 

each cell, to identify gold mining activities 

per cell 

764.71 km2   

area 

 

2008, 2013, 

2021 

 

 College of Earth Sciences, 

Chengdu University of 

Technology (Liang Tang) &  

 

School of Geography, Earth 

and Atmospheric Sciences, 

Faculty of Science, The 

University of Melbourne (Tim 

T. Werner) 

 

Global mining footprint 

mapped from high-resolution 

satellite imagery | 

Communications Earth & 

Environment (nature.com) 

 

 

Using a spatial sampling approach, we integrate observations from the selected datasets, resulting 

in 383 unique locations for exploratory analysis. A gridded framework is used to calculate 

observations. As the dependent variable, net migration estimates were mapped using a World 

Mollweide projection along 25 x 25 km grid cells and reprojected to World Geodetic System 

version 84 (WGS84) for available five-year intervals. CHIRPS 5 x 5 km raster precipitation values 

were overlaid as coordinate points. CHIRPS and CHIRTS values were extracted based on the 

geographic location within the closest range to the centroid of the net migration estimates, with 

383 coordinate point locations in total. Subsequent precipitation indices and temperature values 

were sampled accordingly. Climate variables were then joined to projected vector grid cells to use 

the sampled values as estimates for the full area covered by its respective grid cell. This direct 

https://www.chc.ucsb.edu/data/chirtsdaily
https://www.chc.ucsb.edu/data/chirtsdaily
https://acleddata.com/
https://acleddata.com/
https://acleddata.com/
https://www.pcr.uu.se/research/ucdp/
https://www.pcr.uu.se/research/ucdp/
https://www.pcr.uu.se/research/ucdp/
https://www.pcr.uu.se/research/ucdp/
https://www.nature.com/articles/s43247-023-00805-6#Sec9
https://www.nature.com/articles/s43247-023-00805-6#Sec9
https://www.nature.com/articles/s43247-023-00805-6#Sec9
https://www.nature.com/articles/s43247-023-00805-6#Sec9
https://www.nature.com/articles/s43247-023-00805-6#Sec9


sampling technique, rather than resampling calculations of variables, allows for more elicit 

comparisons of observed field data. For point-based observations, such as georeferenced conflict 

events, point coordinates are joined to the cell of intersection. This allows for harmonization of 

climate, conflict, and mining data and, socio-economic variables as well as flexibility of modeling. 

All maps presented utilizing QGIS 3.30.2-'s-Hertogenbosch (QGIS 2023). 

TABLE A-2 

GWR model results by 5-year period, Ghana 1990 -1999 

 1990-1994 1995-1999 

Variable Min Mean Max Min Mean Max 

Intercept -0.001 -0.000 0.001 -0.016 -0.002 0.008 

MLDS -0.016 -0.015 -0.015 -0.023 0.005 0.017 

MLWS -0.061 -0.060 -0.059 -0.034 -0.035 -0.005 

PREC 0.016 0.018 0.020 -0.059 -0.050 -0.045 

TMAX 0.087 0.087 0.087 0.127 0.188 0.252 

TMIN -0.022 -0.021 -0.020 -0.016 0.016 0.032 

R2 0.016 0.056 

R2 adj -0.000 0.035 

RSS 376.971 361.586 

AIC 1092.938 1082.459 

Bandwidth 12.910 2.800 

 

TABLE A-3 

GWR model results by 5-year period, Ghana 2000-2014 

 2000 -2004 2005-2009 2010-2014 

Variable Min Mean Max Min Mean Max Min Mean Max 

Intercept -0.014 -0.002 0.007 -0.276 -0.005 0.090 -1.980 0.001 0.286 

MLDS -0.023 0.004 0.016 -0.114 -0.031 0.008 -0.098 0.021 1.493 

MLWS -0.072 -0.034 -0.004 -0.184 0.017 0.196 -0.102 0.101 2.901 

PREC -0.062 -0.053 -0.047 0.015 0.081 0.192 -0.716 0.003 0.806 

TMAX 0.132 0.190 0.251 -0.059 0.009 0.085 -0.317 0.048 1.276 

TMIN -0.014 0.016 0.033 -0.078 -0.018 0.141 -0.257 -0.039 0.319 

CONFL -0.024 -0.022 -0.019 -0.020 0.033 0.148 -0.100 -0.005 0.151 

MINING    -0.456 -0.348 -0.218    



R2 0.056 0.152 0.492 

R2 adj. 0.032 0.102 0.348 

RSS 361.630 324.969 194.455 

AIC 1085.464 1068.178 997.965 

Bandwidth 2.860 1.330 0.460 

 

TABLE A-4 

MGWR model results by 5-year period, Ghana 1990-1999 

 1990 - 1994 1995 - 1999 

Variable BW alpha95% Min Mean Max BW alpha95% Min Mean Max 

Intercept 12.910 0.998 -0.002 -0.001 0.000 12.910 0.998 -0.002 -0.001 0.000 

MLDS 12.910 0.998 -0.015 -0.015 -0.014 12.910 0.997 0.057 0.058 0.060 

MLWS  12.910 0.997 -0.060 -0.060 -0.059 12.910 0.997 0.046 0.047 0.049 

PREC 12.910 0.996 0.016 0.018 0.020 12.910 0.997 -0.010 -0.009 -0.008 

TMAX 12.910 0.997 0.086 0.087 0.088 12.910 0.997 -0.080 -0.079 -0.078 

TMIN 12.910 0.998 -0.022 -0.021 -0.020 12.910 0.997 0.049 0.051 0.052 

R2 0.016 0.015 

R2 adj -0.000 -0.001 

RSS 376.972 377.180 

AIC 1095.032 1095.251 

 

TABLE A-5 

MGWR model results by 5-year period, Ghana 2000 - 2014 

 2000-2004 2005-2009 2010-2014 

Variable BW alpha9

5% 

Min Mean Max BW alpha

95% 

Min Mean Max BW alpha95

% 

Min Mean Max 

Intercept 12.910 0.999 -0.051 -0.051 -0.051 12.910 0.998 0.011 0.012 0.013 12.910 1.970 0.063 0.064 0.064 

MLDS 12.910 0.999 -0.042 -0.041 -0.041 12.910 0.998 -0.031 -0.031 -0.030 12.910 1.972  0

.032 

0.033 0.033 

MLWS  0.210 0.324 -4.988 -0.073 0.384 0.220 0.312 -2.270 0.042 1.686 0.200 3.425 -

0.245 

0.103 7.095 

PREC 12.910 0.999 -0.050 -0.049 -0.049 12.910 0.998 0.076 0.077 0.078 12.910 1.972 0.073 0.074 0.075 



TMAX 0.180 0.281 -1.557 0.080 2.778 9.280 0.994 -0.009 -0.006 -0.003 12.910 1.971 0.001 0.002 0.003 

TMIN 4.640 0.986 -0.089 -0.079 -0.069 12.910 0.997 -0.023 -0.022 -0.022 12.910  1.9

71 

-

0.064 

-

0.064 

-

0.063 

CONFL 12.890 1.000 0.002 0.002 0.002 12.910 0.997 0.031 0.032 0032 12.910 1.976 -

0.009 

-

0.009 

-

0.008 

MINING      1.910 0.990 -

0.046

4 

-0.405 -0.375      

R2 0.718 0.432 0.677 

R2 adj 0.567 0.310 0.592 

RSS 108.183 217.699 123.663 

AIC 870.515 1006.926 814.963 

 

TABLE A-6 

GWRF model results, Ghana 1990-1999 

Parameter 1990-1994 1995-1999 

 OOB Not OOB OOB Not OOB 

R2 -0.1388 74.742 -0.1401 69.887 

MSE 300.20 66.585 314.56 74.492 

AIC 2198.805 1622.016 2012.389 1303.482 

AICc 2199.104 1622.315 2012.934 1304.018 

     

mtry 5 5 6 6 

ntree 800 800 800 800 

bw 18.1 18.1 17.4 17.4 

 

TABLE A-7 

GWRF model results, Ghana 2000-2014 

 2000 - 2004 2005 -2009 2010 - 2014 

Parameter OOB Not OOB OOB Not OOB OOB Not OOB 

R2 0.1381 0.7183 0.1239 0.7022 0.2004 0.7392 

MSE 145.814 72.124 158.173 70.393 128.095 66.193 



AIC 1829.284 1627.377 2230.223 1790.07 1502.592 979.712 

  

AICc 1829.729 1627.921 2230.196 1790.634 1503.006 980.223 

  

mtry 3 3 5 5 3 3 

ntree 500 500 750 750 500 500 

bw 15.3 15.3 15.5 15.5 13.2 13.2 

 

Figure A-1 

Standardized residuals for GWR, MGWR, GWRF 
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