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Introduction 
 

The under-five mortality rate, denoted here q(5y), is the probability of dying 
between birth and age 5 year. As a key indicator of the social progress and health status 
of a population, the q(5y) is routinely monitored worldwide. Currently the Sustainable 
Development Goals Target 3.2 aims at the reduction of under-5 mortality to at least 25 
per 1000 livebirths in all countries. To carry out a robust real-time monitoring of this 
target, a well-functioning Vital Registration (VR) system is indispensable. However, in 
most Low- and Middle-Income Countries (LMICs), the coverage of deaths is 
insufficient for that purpose (UNSD, 2022).  

To monitor q(5y), worldwide, the UN IGME has developed a model that 
summarizes and smooths all the sources of information existing in each country (UN 
IGME, 2023).  In the absence of a well-functioning VR system, the alternative sources 
are principally censuses and nationally representative surveys, in particular 
Demographic and Health Survey (DHS). Despite the important contribution of these 
two sources of information, their limitations are well-known. Census estimates are 
rough approximations obtained from simple counts of deaths and surviving children 
(Verhulst, 2016). Although census data allow a fine geographic disaggregation, they 
are only collected every 10 years or so in the best-case scenario. Survey estimates 
derived from birth histories are considered more robust, but their collection is also 
scattered over time (in most cases by 5 years or more) which does not allow a real-time 
monitoring of q(5y) either. Moreover, the surveys also do a poor job detecting short-
term mortality fluctuations because of recall errors, selective biases, and limited 
sample size (Hill, 2013; Silva, 2012). 

Against this backdrop, there has been over the last decade a new international 
impetus to strengthen VR systems (AbouZahr et al., 2015; Oomman et al., 2013). More 
than a technical issue, it is an empowering objective for LMICs to produce robust 
mortality estimates that are based on their own VR data (even after adjustments) 
rather than on international survey programs such as the DHS one. Finding new 
solutions for evaluating and correcting incomplete VR information is thus an 
important goal.  

In this paper, we propose a model for estimating under-5 mortality using 
incomplete VR data. This model relies on age regularities between age 0 and 5 
observed in high-quality VR data. Specifically, the model was derived from the Under-
Five Mortality Database (U5MD) providing distributions of deaths by detailed age, 
including daily, weekly, and monthly breakdowns. The premise of this method is that 
underregistration of deaths does not affect all ages equally. At some ages, deaths are 
more likely to be underreported in the first weeks and months after birth. Our strategy 
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consists then in correcting the mortality for very specific age (such as neonatal age) 
based on the remaining age ranges considered more robust. This makes possible the 
use of large unexploited series of data as well as the monitoring of the coverage of 
deaths. In this paper, we test this method with data from 25 countries. The goal is to 
use this set of countries to provide guidelines with global applicability. 
 
Data and method 

 
We used the Demographic Yearbook (DYB) System of the United Nations 

Statistics Division (UNSD). The DYB System provides (1) yearly death counts from VR 
data by detailed age between 0 and 1 and by single year of age between 1 and 5, and (2) 
population counts from censuses by single year of age (that we interpolated and used 
as exposure to the risk of dying following a method developed elsewhere). We selected 
countries where the coverage of deaths was considered insufficient by the UN IGME 
for direct estimation between 2000-2020 (including countries that have reached 
completeness during that period), and we selected country-years for which at least one 
age breakdown was available between age 0 and 1. We excluded countries from South 
Asia and sub-Saharan Africa given that they are not well represented by the model 
used in this paper. These criteria allowed us to analyse a pool 25 LMICs. 

For these selected countries, we computed several mortality indicators that 
exclude the earliest periods of life prone to underreporting of deaths. Specifically, we 
computed cumulative probabilities of dying from age x to 5 years q(x,5y), where x can 
be (when available) 28d, 3m, 6m, 9m, 12m. We used these probabilities of dying that 
are potentially not affected by early underreporting of death to predict mortality 
between age 0 and 5. 

 
We generated the prediction using a model developed elsewhere(Guillot et al., 

2022). In this model, the cumulative probability of dying between birth and age x, q(x), 
is assumed to be a log-quadratic function that depends on two entry values: i) q(5y) 
which determines the overall level of mortality; and ii) a parameter k which determines 
the age pattern of mortality: 
 

𝑙𝑛[𝑞(𝑥)] = 𝑎𝑥 + 𝑏𝑥𝑙𝑛[𝑞(𝑥)] 	+ 𝑐𝑥𝑙𝑛[𝑞(𝑥)]! + 𝑣𝑥𝑘 
 

The set of coefficients [ax,bx,cx,vx] was derived from 1275 country-years 
selected among Under-Five Mortality Database (U5MD, covering the historical 
experience of industrialized countries from the early 20th century to the most recent 
years. Age groups are defined following 22 exact-age cut-off points: 0, 7, 14, 21, 28 
days; 2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21 months; 2, 3, 4, 5 years. The model allows 
to use any age group defined by these cut-off points to predict a full series of 22 q(x) 
from 0 to 5. 
          The parameter k takes a continuous range of values between -1 and 1. When k=0, 
the model predicts a series of q(x) values corresponding to the average age pattern 
observed in the U5MD.  This parameter determines a higher-than-average 
concentration of deaths either at older (k >1) or at younger age (k <1) ages. The 
parameter k is adjustable by fitting observed data and can be optimally calculated 
when q(5y) is related to one or more independent probabilities of dying. Preliminary 
results are based on the average age pattern (k=0). 
 



Preliminary results and Further work 
 

Figure 1 shows the results for selected cases that represent four types of 
situations that we identified among the 25 studied countries. 

First, the situation of Guatemala corresponds to the case scenario for which the 
model predictions are well aligned with the levels of mortality derived from existing 
DHS estimates. In this case, predictions were based only on q(28d,5y) due to the 
limited availability of age breakdown in the DYB System for this country. Results show 
that using that age group, our model was able to correct for the underreporting of 
about 25% deaths between 0 and 28 days (taking thus the DHS estimates as reference). 
The great advantage of this method in this type of situation is the ability to track at 
very low-cost annual variations—including increases in mortality—that the DHS is not 
able to capture. Note that the UN IGME curve relies mostly on the DHS for recent 
estimates. Therefore, this curve only extrapolates the trend and ignores the annual 
variation in the raw VR data. In contrast, our model takes advantage of the existing 
information between 28 days and 5 years and enable the real-time monitoring of 
under-5 mortality. 

Second, the case of Colombia displays similar features to that of Guatemala, 
that is a strong correction of the level of mortality and a better monitoring than the 
DHS and the UN IGME estimates. However, in this case, the level of the DHS is not 
completely reached and the different age groups (not distinguished on the plot) 
generate a range of predictions. This indicates that the age groups for prediction might 
be affected themselves by underreporting of deaths, although to a small extend. On the 
other hand, the gap between the model prediction and the DHS estimates is also 
potentially due to the uncertainty on the DHS estimates and the uncertainty in the 
value of k. In the final paper, the results for all countries will include a procedure to 
determine the best age group to be used as predictor and the analysis of the uncertainty 
of all estimates. 

Third, the case of Kazakhstan represents a group of countries that have reached 
completeness in the coverage of under-5 deaths over the last 20 years. In this case, no 
DHS survey is available for comparison. Nonetheless, this example shows how the 
model can be used to track the critical moment when a VR system is reaching 
completeness. In the 2008, Kazakhstan has benefited from a reform of its VR system 
that has radically increased the reported number of deaths. As visible, this change is 
fully captured by the model and followed by a strong convergence of the different 
predictions based on different age groups. Therefore, the method that we propose in 
this paper constitutes tool that can help validate the completeness of a VR system in 
low- and middle-income countries. In the final paper, we will show this model’s ability 
in other countries, in particular those that have experienced a slower progress in the 
coverage of deaths. 

Fourth, the case of Peru shows the situation in which to the underregistration 
of deaths is too high and affects all ages groups between age 0 and 5. In this situation, 
the model is unable to leverage the exiting VR data and predictions remain strongly 
underestimated compared to DHS. In the final paper, we will determine a threshold of 
death coverage from which the model is expected to perform well. All the insight that 
we will derive from the three case scenarios described above will be key for the 
countries reaching this threshold in the future. 

 
 
 



Figure 1. Trends in the under-five mortality rates (q(5y)). Four case scenarios of VR data 
correction 
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