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Abstract 

Demographic studies on healthy life expectancy mostly rely on the Markov assumption and 

suffer from the limitation that the duration of exposure to risk is not considered. There are 

models designed to account for duration dependency, such as the semi-Markov model and the 

multistate life table with duration dependency (DDMSLT). However, these models cannot be 

directly used on left-censored survey data as they require knowledge of time spent in the initial 

state, which is rarely known due to the survey design. This study proposes a flexible approach 

to utilize this type of survey data in a DDMSLT framework to estimate the multistate life 

expectancy. The approach involves dropping some left-censored observations but keeping as 

many as possible by the truncation of a duration length after which duration dependency is 

negligible. We apply this approach to older adults in the US based on the Health and Retirement 

Study to compute healthy life expectancy and examine the duration dependency compared to 

the typical multistate life table with Markov assumption. Our findings suggest that duration 

dependency is present in transition probabilities. However, the effect on healthy life expectancy 

is averaged out between the short-term states and the long-term states. As a result, the bias is 

minimal in the context of this study, and for the simplicity of the model, the Markov assumption 

is justified when calculating healthy life expectancy.   
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Introduction 

The discrete-time multistate life table (MSLT) is widely used to calculate healthy life 

expectancy (HLE) in demographic and population health research. MSLT assumes that health 

transitions follow a first-order Markov Chain, where transition rates are assumed to depend 

only on the starting state. However, in reality, a person who has been disabled for five years 

would be unlikely to have the same probability of recovery as the person disabled for just one 

year. This what is known as duration dependence – the notion that the length of time a person 

has spent in any given state (e.g., in a state of disability) is an important factor or proxy factor 

influencing the chances of shifting out of the state. Various approaches have been developed 

over the years to relax the Markov assumption and incorporate duration dependence (e.g., 

Steele et al. 2004; Wolf 1988) and several studies across social, demographic, health and 

economic contexts have indeed pointed to the importance of duration times (Belanger 1989; 

van den Berg & van Ours 1996; Cai et al. 2008; Crowther & Lambert 2014; Maddox et al. 

1994; O’Donnell 2021). In studies of health and disability, Maddox et al. (1994) suggested that 

the risk of impairment was time-dependent after controlling for demographic and 

socioeconomic status. Cai et al. (2008) also found that the probability of recovering from a 

disability decreased with the duration of the disability, while the probability of developing a 

disability decreases with a longer duration in active health. Incorporating duration dependence 

into demographic life table-based models though can be data intensive and computationally 

difficult, meaning that studies that incorporate duration dependence are very rarely able to 

produce estimates of multistate life expectancy. Using data on disability transitions in the 

United States, this study develops and tests options to address this gap.  

Most studies exploring duration dependency only present transition probabilities 

without examining the impact on the HLE. There are several potential explanations for this gap, 

though a leading candidate is the methodological complexity in calculating multistate life 

expectancies with duration-dependent models. Specifically, the very large expansion in the 

state space of many duration-dependent models can make it infeasible if not near impossible 

to calculate life expectancies with a standard Markov life table. As a result, papers calculating 

HLE typically rely on the standard Markov MSLT and only mention the restrictiveness of the 

Markov assumption as a limitation. However, demographers have developed approaches for 

introducing duration dependence to multistate analyses, with particular applications to marital 

transitions (Belanger 1989; Schoen 2021; Wolf 1988). The MSLT with duration dependence 

(abbreviated to DDMSLT) has been discussed since the 1980s after the development of a 
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discrete-time semi-Markov approach (e.g., Littman & Mode (1977); Hennessey (1980)). Wolf 

(1988) proposed a generalized multistate life table depending upon the duration of risk 

exposure and showed that DDMSLT, though inherently a non-Markovian process, embeds the 

Markovian component. Thus, DDMSLT shares most properties with MSLT, except that the 

state space is substantially larger because the states are duration-category-specific.  

One of the key inputs required for designing multistate models that incorporate duration 

dependence is information on how long people have been living in their present state. When 

the start time of an event and state transition is known, like the timing of a job loss and entry 

into unemployment, semi-Markov process (SMP) models can incorporate duration dependency. 

However, left censoring is a common problem in panel studies. In these left-censored surveys, 

the timing of events occurring before the observation period of the survey are usually unknown 

and we do not know how long respondents have been in the state in which they were first 

observed. Current solutions are imperfect. As Guo (1993: 224) notes “When the start time is 

not known, left truncation remains a very difficult problem unless we are willing to assume a 

constant hazard rate or to delete all left-truncated subjects”. Assuming constant hazards could 

be severely biased while discarding observations without known start times leads to substantial 

loss of information and could be infeasible for survey data where left censored records make 

up a large proportion of all survey records. Cai et al. (2006) proposed a backward imputation 

method to simulate the duration elapsed so that they can apply SMP. Nevertheless, this method 

is computationally heavy, and “the estimates may be dominated by the imputed duration” (Cai 

et al. 2008:5522) when the follow-up period is short. The problem of left censoring and the 

computational difficulties and assumptions of current approaches to address it thus add to the 

substantial gap in understanding and incorporating duration dependence into the calculation of 

multistate outputs including health life expectancy.  

The objectives of this study are twofold. First, we modify and improve the flexibility 

of the multistate life table with duration dependency (DDMSLT) (Wolf 1988) to make it 

feasible on left censored survey data. Secondly, this approach enables us to examine the 

duration effects on HLE by comparing it with the HLE from the typical MSLT. With the 

comparison, we can uncover whether the bias from failing to incorporate duration dependence 

is serious in the calculation of HLE. 
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Methods 

Models 

The state space of a typical three-state first-order Markov MSLT for estimating HLE is 

depicted in Figure 1a. There are two transient states (health and unhealthy) and one absorbing 

state (death). If this model is by single year of age, the health state of the next age would only 

depend on the health state of the current age. A semi-Markov model (SMP) is very similar to 

the Markov model except that it assumes that the health state of the next age depends on the 

state in the current age and the duration in this current state (conceptually shown in Figure 1b). 

Thus, the probabilities of transitioning from one state to the next in the SMP model are 

conditional on the length of time spent in the origin state. Duration-specific transition 

probabilities can be calculated non-parametrically directly from the raw date and they can be 

modelled parametrically, including by including duration time as a covariate in regression-

based models that predict transitions (Cai et al. 2006).  

However, to use this model, we need to know the exact duration in each state. As 

discussed, this is a common problem using many panel datasets where we do not know the 

duration time that survey respondents have spent in the state in which they are first observed. 

In other words, we often do not know how long respondents have been in the state they were 

recorded in at wave 1 of the survey. This is the problem of left censoring. One of the ways we 

could treat the left censored observations with unknown starting times is to discard all of them 

(Allison 1984). This method could avoid biases from extra assumptions but at the cost of losing 

individuals making no transition over the observation period. This could lead to a potential 

selection bias and the reduced sample characteristic is most likely older than the one in the full 

data. As a result, the estimates of the older sample could also be biased. The other way to deal 

with this issue is by the EM algorithm to impute the missing observation before the start of the 

survey (Cai et al. 2006). Proponents argue that with this approach, SMP models can be 

estimated based on the full data with the imputed duration. However, the algorithm would need 

the observed durations to impute the unobserved durations. Thus, the similar selection bias in 

Allison’s method could be extrapolated to the imputed observations before the censor.   
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Figure 1a. State space of MSLT with Markov model 

Figure 1b. State space of MSLT with Semi-Markov model 
Note: “Dur” represents duration.  

The other potential model, duration dependent MSLT (DDMSLT), treats duration as a 

categorical variable and incorporates duration in each state. Figure 2a shows the state space 

and the pathways of transition. DDMSLT shares most properties with MSLT, except that the 

state space is substantially larger because the states are duration-category-specific. Duration 

increases each age if one stays in the same health status, which is a new state. However, the 

duration is reset to 0 when one changes to another health status. Also, an individual can die 

from any state, indicated aggregately as the blue shaded arrows. This model requires a known 

duration for each health state as well, similar to the SMP model. 

Therefore, we propose a small modification, truncated DDMSLT, to allow the model 

to utilize some of the observations without a known origin. Similar to the Allison method, we 

drop the observations with unknown origin until a truncated duration. For example, in Figure 

2b, this truncation point is set to 3 years of duration. Any observations remaining in the same 

state for 3 years or more are included in “Dur 3+”. This model can be understood as a piecewise 

function, when the duration is below a certain bound, it is a semi-Markov process; and when 

the duration is over the bound, it is a Markov process independent of duration. Because the 

model incorporates duration into each health state, it is easy to adjust the duration dependency 

for any specific health state. 

Healthy Unhealthy 

Dead 

Healthy Unhealthy 

Dead 

Dur 
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Figure 2a. DDMSLT  
Note: “Dur” represents duration. “Dur …” aggregates other states with longer duration. The 
blue shaded arrows represent transitions to death from all states.  

 

Figure 2b. Truncated DDMSLT (T-DDMSLT) 
Note: “Dur” represents duration. “Dur 3+”, as an example, include the states with 3 and above. 
“3” can be changed to any other truncation of duration. The blue shaded arrows represent 
transitions to death from all states.  

 

 
Figure 2c. Truncated DDMSLT with history of unhealthy event (T-DDMSLT-H) 
Note: “Dur” represents duration. “Dur 3+”, as an example, include the states with 3 and above. 
“3” can be changed to any other truncation of duration. The blue shaded arrow represents 
transitions to death from all states. 
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A modification to the model utilizing this feature is illustrated in Figure 2c. This model 

includes a state recording whether an individual with any history of unhealthy events in the 

past (c.f. Bardenheier et al. 2016). This state is treated as a Markov state where no duration is 

tracked. As for the other “healthy” state with a history of being unhealthy, the duration can be 

tracked with the truncation at 3 years of duration as well. However, this duration dependency 

can also be removed similar to how Bardenheier et al. (2016) constructed their state space. 

With all these different model designs in Figure 1 and Figure 2, we can estimate the transition 

probabilities based on empirical data and compare their HLE estimations.   

Data 

We use data from the US Health and Retirement Survey (HRS), a bi-annual national 

longitudinal survey. The HRS has a long follow-up period of 15 waves, from 1992 to 2020. 

However, due to the coverage of cohorts and sampling weight change, we only use the data 

from wave 5 (2000) to wave 15 (2020). We select a birth cohort, 1936-1945, to estimate the 

cohort HLE. This cohort is around 60 years old in 2000. To test the model sensitivity to shorter 

follow-up duration, we also constructed a sub-sample of HRS from wave 5 to wave 9 (2008). 

In contrast to the cohort HLE, we use this sub-sample to estimate period HLE due to the smaller 

sample size.  

Disability in this study is measure as difficulty in doing the five basic Activities of Daily 

Living (ADL): bathing, dressing, eating, transferring in/out of bed, and walking across a room. 

Individuals are classified as unhealthy if they report difficulty on any of the five ADLs 

(Freedman et al. 2004); otherwise, healthy. HRS also captures death event by linkage with the 

national registry.  

Estimation procedures 

Multinomial logistic regressions are used to estimate the age-specific transition probability. 

Logistic regression is commonly used to estimate discrete time MSLT and SMP models (e.g., 

Cai et al. 2006; Shen and Payne 2023). These transition probabilities are then inputted to a 

microsimulation model with a synthetic cohort of 100,000 individuals. For the typical MSLT 

model, the covariates include age, age-squared, sex and interactions between age and sex. For 

the T-DDMSLT, we first drop the observations with unknown duration less than the truncation 

point and group all the states with (known or unknown) duration above the truncation point. 

Using this technique, we can estimate T-DDMSLT and T-DDMSLT-H with different 
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truncation points. In the results, we only show the truncation with 3 and 5 years. However, to 

ensure the samples used in different models are comparable, we constrain the sample to the 

one with truncation of 5 years. We also estimate another MSLT model with the constrained 

sample. For the SMP model, we remove all the observations with unknown origin and fitting 

the result of the sample. Therefore, there are three subsets of data used in the estimation: 1) full 

data; 2) data dropping unknown duration of 5 years; 3) data without unknown origins. 

Bootstrap resampling from the original dataset is used to generate confidence intervals (CIs). 

Based on these 500 bootstrap samples, we re-estimate and simulate. The final point estimates 

reported in the results are from the entire dataset, and the 95% CI is taken as the central 95% 

of the 500 bootstrap resamples times. 

Results 

The results are mainly based on the cohort perspective with 20 years of follow-up. First, we 

look at the males’ transition probabilities in different models in Figures 3 and 4. Figure 3 shows 

age-specific transition probability from 65 to 80 by current health state, with healthy on the left 

panel and unhealthy on the right. The colour of the lines represents the next state. For example, 

the probability of remaining healthy (red line on the left panel) is about 0.95 at age 65. The 

dominant transitions are typically remaining in the same state be it healthy or unhealthy.  

Figure 3. Age-specific transition probabilities for male cohort 1936-1945 with MSLT (Full) 
Note: 95% CIs are in the shaded area.  
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Figure 4a. Probability staying healthy at age 65 for male cohort 1936-1945   
Note: Duration at 6 for the model T-DDMSLT-H (5) refers to the special state: healthy without 
history of unhealthy events. 95% CIs are in the error bars. SMP model is estimated using the 
subsample without any unknow duration. 

Figure 4b. Probability staying unhealthy at age 65 for male cohort 1936-1945   
Note: 95% CIs are in the error bars. SMP model is estimated using the subsample without any 
unknow duration. 

Since the age patterns are rather smooth, we focus on the duration in each age rather 

than the age pattern in Figure 4. Figure 4 shows the transition probability of remaining healthy 
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(in panel a) and remaining unhealthy (in panel b) for male at 65 in cohort 1936-1945. Noted 

that the T-DDMSLT (0) is the same as model. However, T-DDMSLT (0) is different from the 

MSLT in Figure 3, because it is estimated with data dropping unknown duration of 5 years. 

Additionally, the SMP model used another subsample without any unknown duration. Because 

the duration is estimated as a continuous function in SMP, it is smoothed across all durations.  

The transition probabilities in the SMP and T-DDMSLT models are significantly lower 

for shorter durations and increase as duration increases in comparison to the MSLT. The 

probability of remaining healthy, however, increases at a slower rate over time than the 

probability of staying unhealthy. In both panels, the transition probabilities in the T-DDMSLT 

model gradually decline over the first few durations before gradually increasing over greater 

durations. Figure 4a shows that the likelihood of being healthy increases after two years, while 

Figure 4b shows that the likelihood of remaining unhealthy increases after one year. In 

particular, the transition probability at the truncation duration is significantly higher than the 

MSLT estimate. In other words, the stickiness is higher for long-term state, but the fluidity is 

also higher for the short-term state compared to the Markov MSLT model. For the model 

recording history of unhealthy event (T-DDMSLT-H (5)), the duration at 6 in Figure 4a 

represents the special state: healthy without history of unhealthy events. After the separation 

of individuals without history, the probability of staying healthy for duration 5 or above is 

much lower than the T-DDMSLT (5) model. It indicates that the people with history are 

probability frailer and more likely to transition out of healthy state.  

Figure 5. Partial healthy life expectancy of male cohort, age 65-80 
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The partial cohort life expectancy from 65 to 80 can be calculated using the 

microsimulation with the probability from each model. The first MSLT model makes use of 

the entire set of data, and while its unhealthy life expectancy (ULE) is much lower than the 

other models', its HLE is noticeably greater than that of those other models. However, all of 

the T-DDMSLT exhibit comparable HLE and ULE once the sample was restricted to a 

truncation of 5 years. Additionally, even using an even more constrained sample than the T-

DDMSLT, the SMP model's estimation is not statistically different from that of the T-

DDMSLT (0) (i.e., the MSLT with a 5-year truncation).  

We can calculate the duration remaining life expectancy at age 65 based on the shorter 

follow-up subsample and similar approaches. After taking into account the uncertainty, the 

HLEs are quite comparable across all models. In contrast to the T-DDMSLT and SMP models, 

the MSLT model using the complete dataset would generate a substantially lower ULE. This 

result is strikingly similar to that of Cai et al. (2006), who suggest that their EM-SMP model 

results in a longer period of disability than the traditional MSLT model. It is worth noting that 

HLE is slightly lower than the other T-DDMSLT if the history is recorded, though it is not 

significant.  

Figure 6. Remaining healthy life expectancy at 65 for male in 2000  

Discussion and Conclusion 

There are observable differences in multistate transition probabilities when duration 

dependency is taken into account. To be more precise, the probability of remaining in the same 
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state is lower compared to the Markov MSLT model, but it rises and becomes higher as the 

duration remaining in the same state increases. These trends have also been seen in other studies, 

including those by Cai et al. (2006, 2008). Yet, the discrepancy in transition probability may 

not translate to differences in the healthy life expectancy, which appears to contradict with Cai 

et al. (2006). 

The important point to note is that MSLT could estimate a very similar healthy life 

expectancy to the one with duration dependency, be it T-DDMSLT or SMP if they are all based 

on the sample without some (or all) of the left-censored observations. The difference between 

MSLT and models with duration dependency only appeared in this study when the sample for 

the estimation was different. As discussed in the foregoing passage, the sample characteristics 

are likely to be incomparable. One of the most prominent and intuitive distinctions would be 

age because duration can only be observed after one transition from a different state. 

Patterns in duration can explain why transition probability differ between models yet 

healthy life expectancies are comparable. While stickiness to the same state may be lowered in 

shorter-duration states, stickiness is greater in longer-duration states. MSLT averages out the 

impacts of duration dependency since it uses data with all durations. As a result, after 

controlling the data, the estimates with and without duration dependency are comparable. 

However, if the focus is on life course trajectories rather than life expectancy, the simulation 

with duration may produce different findings from the simulation with the Markov assumption. 

This might be a future study topic for more investigation. 

In conclusion, we indeed, also find duration dependency in the different models tested. 

However, in estimating healthy life expectancy in this study, any bias induced by not 

considering duration dependence is not so serious when the sample for the estimation is the 

same. As discussed by Guo (1993), the left-censored design is practically an intractable issue. 

There is no model being a gold standard without its specific assumptions and limitations. Given 

that the standard MSLT can produce comparable estimates to the different models with 

duration and also utilizing the most observed data, for the simplicity of the model, the Markov 

model is a sound approach to estimating healthy life expectancy. This finding though is specific 

to the context of this study and future research may look to explore conditions under which 

duration dependency does have a meaningful impact on life expectancy calculation.  
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