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1. Introduction 
The long history of modelling fertility age schedules has always attracted the interest of demographers 

(e.g., Bloom & Trussell, 1984; Booth, 1984; Coale & McNeil, 1972; Hoem et al., 1981; Peristera & 

Kostaki, 2007; Schmertmann, 2003). Such models have proven useful for describing fertility patterns 

by age, correcting flawed fertility data, and forecasting fertility rates. However, the models often 

overlook the social processes that govern fertility or the diverse components that constitute the total 

fertility rate (Page, 1977, pp. 85). The underlying fertility behaviours are typically inferred ex-post from 

model parameters such as the mean age at birth, the standard deviation of age at birth, and the mode 

of age-specific fertility rate, rather than from ex-ante behavioural hypotheses.  

Among these models, those based on diffusion processes and built upon behavioural postulates 

using differential equations often appear (Bass, 1969; Hernes, 1972; Pitcher et al., 1978). While first-

order ordinary differential equations are regularly used in demography, for example, in the exponential 

population growth model and the force of mortality function, compartmental differential equation 

models are rarely featured in demographic literature (Burch, 2018, pp. 79; Willekens, 2011, pp. 175). 

In fact, compartmental differential equations have a long history, dating back to Alfred J. Lotka 

(1934/1998), who proposed the Lotka-Volterra equation, a prey-predator model describing the 

interaction of two species.  

While the development of diffusion models has flourished in other disciplines, its advancement 

has been more limited in demography. Here, only three models, including the Hernes model (Hernes, 

1972), the Rosero-Bixby-Casterline model (Rosero-Bixby & Casterline, 1993), and the Gompertz model 

(Goldstein, 2010), are commonly cited. Though these models have been revisited in recent literature 

(Billari & Toulemon, 2006; Goldstein & Kenney, 2001; Goldstein, 2010; Li & Wu, 2008; Myrskylä & 

Goldstein, 2013), their primary application remains forecasting future marriage and fertility rates. Both 

the behavioural interpretation of model parameters and the theoretical assumptions upon which 

differential equation models depend have not received sufficient attention, possibly undermining the 

models' accuracy and predictability. In a recent review, Cui (202X) introduced literature from other 

disciplines, defined model parameters in terms of fertility behaviour, and underscored the potential 

for differential equations to bridge micro-level behaviour with aggregated-level patterns, offering an 

alternative to agent-based models.  

Studies have consistently shown that fertility behaviours can spread through social networks, 

including those of friends, peers, co-workers, and siblings (Balbo & Barban, 2014; Buyukkececi et al., 

2020; Hensvik & Nilsson, 2010; Kuziemko, 2006; Lyngstad & Prskawetz, 2010). When deciding on the 

timing of childbirth, women face a significant trade-off. Delayed motherhood can increase lifetime 
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earnings; however, postponement is also associated with higher risks of childlessness and adverse 

health outcomes for both mothers and children. To navigate this dilemma, women might turn to their 

social environment to acquire information about the cost-benefits associated with the timing of 

childbearing. They can draw inferences from the experiences of their peers to learn about the 

advantages and disadvantages of childbearing. Therefore, it is reasonable to posit that fertility 

behaviours can diffuse through these networks via the operation of underlying diffusion dynamics and 

are shaped by structural factors. As such, the timing of childbirth can be viewed as the outcome of a 

diffusion process, illustrating how the decision to have children spreads throughout a population. 

In light of these theoretical considerations and recent empirical findings on social interaction, 

this study aims to develop a fertility model using differential equations based on social interaction 

theories. The study aims to answer two research questions: (1) Is it feasible to develop a fertility model 

that describes fertility age schedules using differential equations grounded in social interaction 

theories? (2) How well can the new model empirically fit (cohort) age-specific fertility data compared 

with other differential equation models? 

 The following section provides a theoretical diffusion review, summarising the key diffusion 

mechanisms, and a methodological review outlining the setting of model parameters. Subsequently, 

we will present a new diffusion model for fertility and evaluate its performance in terms of fitting 

accuracy when compared with other differential equation models. Finally, we will discuss the new 

model and draw conclusions based on the findings. 

 

2. Previous methods 
In this section, we explore three well-established demographic models: the Bass model, the Hernes 

model, and the Gompertz model. For a comprehensive review of additional differential equation 

models, readers are referred to the recent work by Cui (202X). These differential equation models have 

analytical solutions that can be derived using a variety of methods, such as the variable separable 

method, Laplace transform, and Riccati equation, once the initial conditions are set. To simplify the 

analytical expression and later estimation process, we integral the differential equations from time 0 

to the time of interest instead of the covering the entire reproductive period.1   

 

2.1 Hernes model 

The Hernes model is used to estimate the process of entry into the first marriage and is established 

based on two hypotheses – marriageability and social pressure. Specifically, as age increases, 

marriageability declines but social pressure increases. For the marriageability assumption, Hernes 

assumed that an individual starts from a certain level of marriage potential, but this potential declines 

with a constant proportion for each time unit. Thus, the expression of marriageability, 𝐴𝑏𝑥, is a 

geometric function, decreasing with a constant proportion for each time unit (𝐴 > 1 and 0 < 𝑏 < 1). 

For the social pressure assumption, Hernes (1972) assumed that as more people get married, the 

likelihood of unmarried people making the transition will also increase (ceteris paribus). The “social 

pressure” force in essence can be considered an imitation (or internal-force-driven) process. The 

Hernes model is defined as, 

𝑑𝐹(𝑥)

𝑑𝑥
= 𝐴𝑏𝑥𝐹(𝑥)[1 − 𝐹(𝑥)], 0 < 𝑏 < 1 𝑎𝑛𝑑 𝐴 > 1                                                                         (1) 

 
1 Mathematically, both integrations (from 15 to 45 and from 0 to 30) are equal.  
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In the fertility context, 𝐹(𝑥) indicates the cumulative first ordered age-specific fertility rate (or the 

proportion of females who have given the first birth). 𝑥 means the time of adoption (in the case of 

fertility, this indicates age of giving firth birth. 𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
 represents the age-specific fertility rate. 𝐴 

is the initial fecundity and 𝑏 is defined as the speed of fecundity deterioration. Insert 𝑙𝑛𝑎 =
𝐴

𝑙𝑛𝑏
 

and 𝑘 =
𝐹(0)

𝑎[1−𝐹(0)]
 into the solution, then the equation can be simplified as the original Hernes model,  

𝐹(𝑥) =
1

1+
1

𝑘𝑎𝑏𝑥

. 

 

2.2 Gompertz model 

The Gompertz model (Hendry, 1972) can be considered as an expression of the internal-forces 

diffusion model. The model takes the logarithm transformation for the maximum proportion of 

adopters, 𝑐, and the proportion of females who have given the first birth, 𝐹(𝑥). Mathematically, it is 

described as:  

𝑑𝐹(𝑥)

𝑑𝑥
= 𝑞𝐹(𝑥){ln (𝑐) − ln [𝐹(𝑥)]},                  𝑞 > 0 𝑎𝑛𝑑 0 < 𝑐 < 1                                                      (2) 

where 𝑞 represents internal forces (i.e., social interaction among individuals). Insert 𝑚 = ln
𝑐

𝐹(0)
 into 

Eq. 2, we can get a simplified version, 𝐹(𝑥) = 𝑒ln(𝑐)−𝑚𝑒−𝑞𝑡
. By using different parameters, the model 

can be transformed into the method without infertility term proposed by Goldstein (2010) (for a 

detailed comparison see Appendix A1).   

 

 

3. New model 
We define the model as follows, 

{

𝑑𝐹1(𝑥)

𝑑𝑥
= {𝑝1 +

1

𝑐
[𝑞1𝐹1(𝑥) + 𝑞2𝐹2(𝑥)]} [𝑐1 − 𝐹1(𝑥)] 

𝑑𝐹2(𝑥)

𝑑𝑥
=

1

𝑐
[𝑞3𝐹1(𝑥) + 𝑞4𝐹2(𝑥)][𝑐2 − 𝐹2(𝑥)]               

,                                                                           (3) 

where, 𝑐 equals the sum of 𝑐1 and 𝑐2 and 𝐹(𝑥) equates to 𝐹1(𝑥) + 𝐹2(𝑥). The parameters satisfy 0 ≤

𝑐1 ≤ 1, 0 ≤ 𝑐2 ≤ 1, 0 ≤ 𝑐1 + 𝑐2 ≤ 1, and 𝑝1 ≥ 0. 𝑝1 symbolizes the external forces (e.g., 

intergenerational transmission, education, income, etc). 𝑐1 and 𝑐2 represent the maximal proportions 

of each subgroup within a birth cohort, respectively. The parameters 𝑞𝑖 represent the internal forces 

(i.e., social interaction among individuals), with subscript 𝑖 referring to one of the four interaction 

forces, where 𝑖 = 1,2,3,4. Notably, 𝑞2 and 𝑞3 gauge the cross-group social interaction forces, while 𝑞1 

and 𝑞4 measure the within-group social interaction forces.  

 

4. Data  
The data utilized in this study were sourced from the Human Fertility Database (HFD 2023), an 

expansive resource for historical fertility data, compiling vital statistics, census counts, and official 

population estimates. The application of standardized methods across all populations over time 

ensures the comparability of the data (Jasilioniene et al., 2015).   
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To mitigate fluctuation, we calculated first-order fertility data from five-year birth cohorts, 

employing age-specific births and cohort exposure data. This strategy permits us to focus on the timing 

of adoption among peer groups, providing more age-related accuracy than period data. Specifically, 

we used age-specific fertility rate (ASFR) and factored in the first-order total fertility rate (TFR) 

calculated from age 15 to 45 (i.e., 𝑇𝐹𝑅 = ∑ 𝐴𝑆𝐹𝑅(𝑥)45
15 ). This age range encompasses almost all first 

births and mitigates potential fluctuations caused by assisted reproductive technology (ART) at later 

ages. Countries with fewer than five available cohorts, lacking full ASFR information covering ages 15 

to 45, and with a total population of less than five million in 2020 were excluded to avoid random 

fluctuations. In total, our study incorporates 19 countries with 93 birth cohorts. The selected countries 

and cohorts are detailed in Table 1. 

 

Table 1 Countries, birth cohorts, and periods of data used in the analysis 

Country Birth Cohorts Country Birth Cohorts 
Belarus 1950-1969 Poland 1960-1969 
Bulgaria 1935-1959 Portugal 1945-1974 
Canada 1930-1969 Russia 1945-1969 
Czechia 1935-1969 Slovakia 1935-1964 

Denmark 1955-1974 Spain 1960-1974 
Finland 1970-1974 Sweden 1955-1974 
Hungary 1940-1974 Taiwan 1965-1969 

Japan 1955-1974 Ukraine 1945-1964 
Netherlands 1935-1969 USA 1920-1974 

Norway 1955-1974   

  Total 93 

Source: HFD (2023) 

 

 

5. Results  
This section is divided into two parts. The first part tests the fitting accuracy of our proposed models 

against empirical data, employing USA 1960-1964, Japan 1965-1969 and Sweden 1970-1974 birth 

cohorts as case studies. Then, we present a table summarizing the performance of the models across 

various indices for the 93 birth cohorts. The final part investigates the predictive power of our models 

by fitting the data from ages 15 through 30, 31, up to 44, and then extrapolating the curve to age 45. 

Figure 2 depicts the fertility rates estimated by the Gompertz and Hernes models (in the first 

column), the full model (in the second column), and the simplified model (in the third column) for the 

selected three birth cohorts. Our full model (Eq. 3) successfully captures most characteristics of the 

age-related fertility schedule (e.g., the fertility humps at different ages), while the other models can 

generate a unimodal pattern.  

 



EPC - Long abstract                                                                                                                                        Qi Cui 

5 
 

 

Figure 2 Observed and estimated first-order age-specific fertility rate, selected countries and birth 
cohorts   

Source: Calculated by authors based on HFD (2023).  
 
 

In assessing the performance of our model's fitness, we utilized four key indices: the Sum of 

Squared Errors (SSE), the Mean Absolute Percentage Error (MAPE), the Mean Squared Error (MSE), 

and the Bayesian Information Criterion (BIC). Both the BIC and MSE serve to penalize models that 

incorporate a larger quantity of free parameters. Typically, models exhibiting lower values of SSE, 

MAPE, MSE, or BIC are favoured due to their superior accuracy and fit. An overview of the results for 

all countries and five-year birth cohorts is encapsulated in Table 2. As evident from the data, our model 

excels in comparison to its counterparts and significantly curtails errors. The simplified model 

demonstrates impressive results as well. Results pertaining to other models are detailed in Appendix 

A3. 

 
 Table 2 Model performance of different differential equation models, using different error indices  

Source: Calculated by authors based on HFD (2023).  

Category Model SSE (Rank) MAPE (Rank) MSE (Rank) BIC (Rank) 

Diffusion models 

Gompertz 0.002280 (2) 0.030793 (3) 0.000081 (2) -286.413542 (2) 

Hernes 0.011890 (3) 0.013902 (2) 0.000424 (3) -255.825959 (3) 

New model 0.000071 (1) 0.001109 (1) 0.000003 (1) -390.249654 (1) 
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Figure 3 compares the predictive power of our models to the above differential equation models 
and two frequently cited approaches: the Coale-McNeil model and the freeze rate approach. It's worth 
noting that the freeze rate approach was considered as the benchmark model in a recent fertility 
model survey (Bohk-Ewald et al., 2018). In our analysis, to systematically examine model predictive 
performance, we fitted the data with varying ranges starting from age 30 to age 44. As illustrated in 
Figure 3, our models outperform the rest, substantially reducing the SSE. The freeze rate does not yield 
as promising results as those found by Bohk-Ewald and her colleagues. It only outperforms the full 
model after age 42, where the age-fertility rates have already reached low levels. Freezing these ages 
until 45 inevitably produces negligible residuals. Further comparisons with other models are presented 
in Appendix A4. 
 
 

   
Figure 3 Comparison between different models in terms of average SSE  
Notes: Two reference approaches are presented, including the Coale-McNeil model and the Freeze rate. Freeze 
rate: age-specific fertility rates hold constant at the corresponding age to age 45. The average SSE is calculated 
based on the predicted fertility rates across cohorts and population. For example, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑆𝐸(31)  =

 
1

𝐾
∑

1

𝐽
∑ ∑ 𝑆𝑆𝐸(𝑥, 𝑗, 𝑘)45

𝑥=31
𝐽
𝑗=1

𝐾
𝑘=1 , 𝑥, 𝑘, and 𝑗 represent age, birth cohort, and country, separately. 

Source: Calculated by authors based on HFD (2023). 

 

 

6. Conclusion 
In conclusion, our paper introduces a novel differential equation model designed to scrutinize fertility 

diffusion behaviour. Our model acknowledges population heterogeneity, postulating two latent groups 

with fertility behaviours triggered by distinct forces. The differential evolution approach is employed 

to estimate the model parameters. The efficacy of our model is tested using the Human Fertility 

Database, covering 19 countries (93 cohorts), with both the complete and simplified versions of our 

model outperforming other diffusion and conventional demographic parametric models. It's important 

to remember that the conclusions drawn in this paper are influenced by the nature of the databases 

used and may vary in different contexts. Nevertheless, we believe our innovative model contributes 

valuable insights into the diffusion process in fertility analysis. 


