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Abstract

Multivariate functional data that are cross-sectionally compositional data
are attracting increasing interest in the statistical modeling literature, a
major example being trajectories over time of compositions derived from
cause-specific mortality rates. In this work, we develop a novel func-
tional concurrent regression model in which independent variables are
functional compositions. This allows us to investigate the relationship
over time between life expectancy at birth and compositions derived from
cause-specific mortality rates of four distinct age classes, namely 0–4, 5–
39, 40–64 and 65+. A penalized approach is developed to estimate the
regression coefficients and select the relevant variables. Then an efficient
computational strategy based on an augmented Lagrangian algorithm is
derived to solve the resulting optimization problem. The good perfor-
mances of the model in predicting the response function and estimating
the unknown functional coefficients are shown in a simulation study. The
results on real data confirm the important role of neoplasms and cardio-
vascular diseases in determining life expectancy emerged in other studies
and reveal several other contributions not yet observed.

keyword: Mortality by Cause, Life Expectancy, Functional Data Analysis,
Compositional Data Analysis,Sparsity.
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1 Introduction

There is still a considerable heterogeneity across countries (even if we focus on
high-income countries only) in terms of longevity, and the variability of the time
pattern with which the recent mortality levels have been reached, is even more
heterogeneous. Several studies have investigated on these time patterns (see, for
instance, Canudas-Romo, 2010), but recently some are trying to analyze the role
of causes of death in determining them. For example, Bergeron-Boucher et al.
(2020) try to determine which causes of death are associated with longevity
extension. Woolf and Schoomaker (2019) attribute the recent stagnation of life
expectancy in the USA to increasing midlife mortality caused by drug overdoses,
alcohol abuses, suicides and some organ diseases. Mehta et al. (2020) contest
these findings, arguing that cardiovascular diseases are mainly responsible for
such stagnation. The idea of associating life expectancy (or other summary
measures of mortality rates) with causes of death, is not new: many of these
employ a decomposition method (see, for instance, Vaupel and Canudas-Romo
(2003)). However much of these studies are limited to a single country (see Jasil-
ionis et al. (2023); Mehta et al. (2020)) or to a single age group (see Remund
et al. (2018)), others (see Canudas-Romo et al. (2020)) collapse time dimension
into a single indicator, thus not considering the evolution of causes of death over
the last decades. Recently Stefanucci and Mazzuco (2022) proposed a combi-
nation of Functional Data Analysis (FDA) and Compositional Data Analysis
(CDA) to analyze the time pattern of causes of death, limiting to mortality
at age 40–64. Although the study by Stefanucci and Mazzuco (2022) provides
some useful insights on the evolution of cause-specific mortality, it remains of
descriptive nature and limited to a specific age group, while it might be of inter-
est to measure if and to what extent different compositions of causes of death
are associated with the evolution of overall mortality in the latest years. Con-
ducting such an analysis can prove highly beneficial in gaining valuable insights
into the epidemiological experiences of different countries. Moreover, it allows
for an indirect association with trends in risk factors, such as the prevalence of
smoking.

We suggest that this can be performed by regressing the evolution of over-
all mortality (measured in terms of life expectancy at birth) with causes of
death composition of mortality as defined by Stefanucci and Mazzuco (2022).
Sun et al. (2020) have recently proposed a log-contrast regression model with
functional compositional covariates but limiting to the case of a scalar response
variable. Although of great interest, their model is not specifically tailored to
our purposes, thus we extend the previous work to cope with the functional
essence of our response variable (life expectancy over time). Such an extension
consists of a concurrent specification of the function-on-function linear regres-
sion model, with appropriate constraints due to the compositional nature of the
covariates. Four age groups of causes of death are considered i.e., 0–4, 5–39,
40–64, and 65+, thus giving rise to four different compositions, each with many
components – not necessarily the same ones, as shown in Table 1. Since it is
reasonable that only few of them are relevant to predict the outcome, the model
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Table 1: Classifications of causes of death used and age groups for which they
are considered.

Classifications of causes of death Age classes
Congenital anomalies (CONG) 0–4
Infancy related causes, excluded congenital anomalies (INFA) 0–4
Certain infectious and parasitic diseases (INFE) 0–4 5–39 40–64 65+
Neoplasms (NEOP) 0–4 5–39 40–64 65+
Respiratory diseases (RESP) 0–4 5–39 40–64 65+
External causes of death (EXT) 0–4 5–39 40–64 65+
Diseases of nervous system (NERV) 0–4 5–39 40–64 65+
Digestive system diseases (DIG) 5–39 40–64 65+
Mental disorders (MENT) 5–39 40–64 65+
Endocrine, nutritional and metabolic diseases (END) 5–39 40–64 65+
Circulatory system diseases (CIRC) 5–39 40–64 65+
Diseases of urogenital system (UROG) 40–64 65+
Lung cancer (LUNG) 40–64 65+
Diseases of skin, musculoskeletal system and connective tissue system (SKIN) 40–64 65+

Table 2: Considered countries.

Area Country
North Eur. Denmark, Finland, Norway, Sweden
West Eur. Austria, Belgium, Switzerland, France, Ireland, Netherlands, UK
East Eur. Hungary, Poland, Lithuania, Estonia, Latvia, Russia, Ukraine
South Eur. Italy, Spain
Extra Eur. USA, Japan, New Zealand, Canada, Australia

specification assumes sparsity of the regression coefficients. In this way, vari-
able selection is performed and interpretable results are obtained. An efficient
computational strategy based on an augmented Lagrangian algorithm is also
described to estimate the proposed model, and the performances of the method
are illustrated through a simulation study.

The article proceeds as follow: in Section 2 we describe the analyzed data
and formalize all the relevant quantities, in Section 3 we introduce a novel con-
current functional regression model with compositional covariates and discuss
its estimation. The results of a simulation study are presented in Section 4 and
the results on real data are extensively commented in Section 5. Finally, Section
6 concludes the article.

2 Data and problem setup

For each cause i, age x and calendar year t, we consider cause-specific mortality
rates that can be written as

imt
x = mt

x

iDt
x

Dt
x

,

where iDt
x is the number of deaths for cause i at age x and time t, Dt

x is the
number of deaths for all causes at age x and time t, imt

x and mt
x are the cor-
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respondent rates. For a given age x, compositions of mortality rates can be
regarded as compositions of imt

x using mt
x as normalization constant. Other-

wise, data with unit-sum constraints may be obtained from iDt
x, using

∑
x,i

iDt
x

as normalization constant. The latter approach was adopted by Oeppen (2008)
and Kjærgaard et al. (2019) to model and forecast age-at-death distributions.
In this way, the parts of the composition are related to different ages and the re-
sults could be difficult to interpret. Although it is not a problem for forecasting
purposes, it is a major drawback for our perspective. The exact opposite of the
previous approach is to study imt

x directly, that is, different compositions for
each age. This would result in many predictors, making estimation problematic,
especially for limited sample sizes. Moreover, as before, interpreting the results
could be challenging. For these reasons, we focus on four age classes: 0–4, 5–39,
40–64, 65+, giving rise to four different compositions. From a demographic point
of view, they account for infant, premature, early-adult and senescent mortality
causes of death patterns, respectively. The underlying idea is that not only the
causes of death composition changes among age groups, but also its effect on life
expectancy varies with age. Age stratification allows us to control for different
age structures across countries and over time. Life expectancy is a summary
indicator of overall mortality that is independent on age structure of population
but the compositions of causes of death are potentially affected by age structure
changes, since some causes might be negligible at very young ages and highly
relevant for old ones (e.g. dementia) and others (e.g. congenital anomalies)
may be the other way round. Therefore, by considering a distinct composi-
tion for each age group, we can take into account the changing significance of
different causes of death according to age. Consequently, certain causes may
become irrelevant for specific age classes. Data on causes of death come from
the WHO mortality database (Organization, Organization) and from the Hu-
man Causes of Death database (HCD) (for Demographic Studies (France) and
for Demographic Research (Germany), for Demographic Studies (France) and
for Demographic Research (Germany)) which contain time series of age-specific
and cause-specific deaths for several countries. A primary issue is that the In-
ternational Classification of Diseases (ICD) has changed significantly over the
years, determining potentially biased results. Following Canudas-Romo et al.
(2020) and Stefanucci and Mazzuco (2022), we use broad categories of causes,
which are minimally affected by the classification revisions. The categories con-
sidered are shown in Table 1: the number of causes is higher with respect to
Stefanucci and Mazzuco (2022), who limit their analysis to age group 40–64.
Here, we also consider causes that are specific to infant ages (e. g., congenital
anomalies) and senescent ones (e. g., mental disorders, including dementia and
Alzheimer’s disease). As can be seen in Table 1, only some of the 14 causes
are included in the composition of a specific age group. For example, age 0–4
includes only 7 causes; the others are ignored as their role for that age group is
negligible. On average, our classification accounts for 88% of the total number
of deaths for the age class 0–4, 92% for the age class 5–39, and 98% for the
age classes 40–64 and 65+. Regarding the countries used in this work, after
some preliminary analyses, we decided to limit the study to the n = 25 nations
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reported in Table 2, with a population size exceeding one million and good data
quality. In order to consider the same time window for each nation, we restrict
the study to the years 1965–2012. Some years are still missing for a few coun-
tries, that is, 2005 for Australia, 1996—1997 for Poland, and 2000 for the UK.
This is not an issue, since our methodology also works for a non-equispaced time
grid. Furthermore, a small number of zero counts is present in the age class 0–4
for external causes, neoplasms, infectious, respiratory and nervous diseases, as
well as for mental and digestive diseases in the age class 5–39 and mental dis-
eases in the other two age groups. Since the data have to be log-transformed,
we replace them by the maximum rounding error of 0.5, which is a common
practice in CDA (Aitchison, 2003). Concerning life expectancy at birth, we use
data from life tables from the Human Mortality Database (HMD) University of
California and for Demographic Research (Germany) (University of California
and for Demographic Research (Germany)), which contains detailed, consistent,
and high-quality data on human overall mortality, with no distinction among
causes (Barbieri et al., 2015).

3 Methods

The main objective is to analyze the time-varying effect of causes of death on
human longevity, studying whether variations in the causes of death composition
can be predictive of life expectancy at birth. Since life expectancies in a given
year are calculated based on age-specific mortality rates for the same year, we as-
sume a concurrent relationship between the response variable and the covariates.
We formulate the statistical problem in a very general way, considering an arbi-
trary number q of age classes and the possible inclusion of time-varying control
variables. Let y(t) = [y1(t), . . . , yn(t)]

⊤ ∈ Rn be the response vector whose i-th
component is the life expectancy at birth at time t ∈ T for the i-th country, with

i = 1, . . . , n. Let xij(t) =
[
xij1(t), . . . , xijpj

(t)
]⊤ ∈ Spj−1 be the composition of

pj cause-specific mortality rates for the i-th nation and j-th age class at time t,

with j = 1, . . . , q, and Sp−1 =
{
[x1, . . . , xp]

⊤ ∈ Rp, xj > 0,
∑p

j=1 xj = 1
}
denot-

ing the positive simplex lying in Rp. Also, let xi(t) =
[
xi1(t)

⊤, . . . ,xiq(t)
⊤]⊤ ∈

Rq be the vector containing all the q compositions, with p =
∑q

j=1 pj , and let

X(t) = [x1(t), . . . ,xn(t)]
⊤ ∈ Rn×p be the matrix of functional predictors at

time t. Finally, Zc(t) ∈ Rn×(pc+1) is the matrix of control variables at time t,
where the first column is a vector of ones 1n, to estimate the functional inter-
cept. The observed life expectancies and compositions of mortality rates at each
calendar year can be considered as discrete observations from y(t) and X(t),
respectively.

3.1 Linear log-contrast model

Since the pioneering work of Aitchison and Bacon-Shone (1984), log-contrast
models have been very popular for regression problems with compositional co-
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variates. Suppose that we observe a response vector y = [y1, . . . , yn]
⊤ ∈ Rn and

a design matrix X = [x1, . . . ,xn]
⊤ ∈ Rn×p with xi = [xi1, . . . , xip]

⊤ ∈ Sp−1,
for i = 1 . . . , n. Because of the unit-sum constraint, each row of the matrix X
cannot vary freely and the classical regression model is subject to identification
problems. A naive solution is to omit one of the parts of the composition, but the
method is not invariant to the choice of the removed component and the resulting
coefficients are difficult to interpret. The idea of Aitchison and Bacon-Shone
(1984) is to perform a log-ratio transformation of the compositional data so
that the transformed data admit the familiar Euclidean geometry in Rp−1. For
a given reference component r ∈ {1, . . . , p}, let Zr = [z1, . . . ,zn]

⊤ ∈ Rn×(p−1)

be the associated design matrix, where the j-the element of zi is given by
zij = log (xij/xir), for j = 1, . . . , r − 1, r + 1, . . . , p. The resulting linear log-
contrast model is

y = 1nβ0 +Zrβr + e, (1)

where β0 is the intercept, βr ∈ Rp−1 is the regression coefficient, and e ∈ Rn

is the error vector, independent from Zr and distributed as N (0, σ2). The
log-contrast model can be written in the symmetric form

y = 1nβ0 +Zβ + e, s.t. 1⊤
p β = 0, (2)

where Z ∈ Rn×p is the matrix resulting from log-transforming each element of
the matrix X, β0 and e are the same as in model (1), and the regression coeffi-
cient βr is the subvector obtained from β by removing the r-th component. The
log-contrast model obeys a landmark concept in CDA, called subcompositional
coherence (Aitchison, 2003): if the j-th coefficient of β is zero, then the results
are unchanged if the model is applied to the subcomposition without the j-th
component.

In the classical regression framework, the least squares estimation can be
performed indifferently assuming the model (1) or the constrained form in (2).
However, in a high-dimensional setup where variable selection is required, the
use of a Lasso penalization method (Tibshirani, 1996) determines the loss of
equivalence between the symmetric and non-symmetric form. For example,
consider the inclusion of a L1 penalty term for model (1), determining the
optimization problem

argmin
βr,β0

1

2
||y − 1nβ0 +Zrβr||22 + λ||βr||1. (3)

The solution of problem (3) is not invariant to the choice of the reference cate-
gory r and, in general, is different from that of the Lasso criteria related to the
symmetric model (2), which determines the optimization problem

argmin
β,β0

1

2
||y − 1nβ0 +Zβ||22 + λ||β||1, s.t. 1⊤

p β = 0. (4)

The latter is proposed and studied in the context of gut microbiome and metage-
nomic data by Lin et al. (2014), who also provide theoretical guarantees for the
resulting estimator. Moreover, the zero-sum constraint makes the model sub-
compositional coherent.
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3.2 Sparse functional concurrent log-contrast regression

Although in practice the functional compositional predictors and the response
variable are observed at each calendar year, here we assume that X(t) and y(t)
are observed for each t ∈ T . Following the notation of Section 3.1 and Section 2,
let Z(t) ∈ Rn×p be the matrix resulting from log-transforming each element of
the matrix X(t) at time t, and recall that y(t) ∈ Rn is the functional response
and Zc(t) ∈ Rn×(pc+1) is the functional matrix of control variables, including a
vector of ones 1n as the first column. The matrix Z(t) contains q compositions
and thus we need to impose q zero-sum constraints to achieve subcompositional
coherence. Following Lin et al. (2014) and Sun et al. (2020), we propose the
functional concurrent log-contrast regression model

y(t) = Zc(t)βc(t) +Z(t)β(t) + e(t), s.t. Lβ(t) = 0q ∀t ∈ T , (5)

where β(t) =
[
β1(t)

⊤, . . . ,βq(t)
⊤]⊤ ∈ Rp is the functional regression coefficient,

with βj(t) = [βj1(t), . . . , βjpj
(t)]⊤ ∈ Rpj for j = 1, . . . , q, βc(t) ∈ Rpc+1 is the

functional regression coefficient related to the control variables, and e(t) ∈ Rn

is the vector of functional errors distributed as N (0, σ2). The set of linear
constraints is represented by the matrix

L =


1p1

0p1
· · · 0p1

0p2 1p2 · · · 0p2

...
...

. . .
...

0pq 0pq · · · 1pq


⊤

∈ Rq×p.

For our study, it is reasonable to assume that the effects of causes of death on
life expectancy are smooth over years. To achieve smoothness, each coefficient
curve is represented by a linear expansion of k known basis functions, such that

β(t) = BΦ(t), βc(t) = BcΦ(t),

where B = [b1, . . . , bp]
⊤ ∈ Rp×k and Bc =

[
b0, bc1 , . . . , bcp

]⊤ ∈ R(pc+1)×k are

the coefficient matrices, and Φ(t) = [ϕ1(t), . . . , ϕk(t)]
⊤ ∈ Rk is the vector of

basis functions. For simplicity and since it is usually sufficient in practice, here
we assume the same number k of basis functions for each predictor and control
variable, obtained considering an equispaced grid of knots. Moreover, we assume
that the elements of Φ(t) are B-splines of order d (De Boor, 1978). A B-spline
of order d is a piecewise polynomial function of degree d − 1 and is defined
by a set of knots, which are the points where the functions meet. The choice
is not restrictive, and other basis functions can be adopted: see Ramsay and
Silverman (2005) for a detailed discussion. The same consideration applies to
the number of basis k, which can be assumed to be different for each coefficient
curve.

Another reasonable assumption is that some compositional components have
no effect on life expectancy. To enable variable selection, we induce sparsity by
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using a L1 penalization method. For model (5), the functional sparsity of the
coefficient curves in β(t) translates into the row sparsity of the coefficient matrix
B. Many penalization methods have been proposed in Statistics and Machine
Learning literature to induce sparsity, among which the Lasso (Tibshirani, 1996)
is probably the most famous. The Group Lasso (Yuan and Lin, 2006) is an
extension which considers the concept of groups of coefficients and fits for the
purpose, since it allows the whole coefficient vectors bj , for j = 1, . . . , p, to be
selected rather than their individual components.

To formulate the optimization problem, the zero-sum constraints and the
coefficient curves have to be expressed in terms of the elements of the matrices
B and Bc. For this purpose, it is convenient to express the problem in terms
of b = vec(B⊤) ∈ Rpk and bc = vec(B⊤

c ) ∈ R(pc+1)k. It can be easily seen that
imposing 1⊤

pj
bj(t) = 0, for j = 1, . . . q and ∀t ∈ T , is equivalent to imposing zero-

sum constraints on the columns of the matrix B, that is, (L⊗ Ik)b = L̃b = 0qk

with L̃ ∈ Rqk×pk. Moreover, we have that

β(t) =
(
Ip ⊗Φ(t)⊤

)
b = Φ̃(t)b,

with Φ̃(t) ∈ Rp×pk and, similarly, βc(t) = Φ̃c(t)bc, with Φ̃c(t) ∈ R(pc+1)×(pc+1)k.
In accordance with the above considerations, we propose to estimate the param-
eters to solve the optimization problem

1

2
argmin

b,bc

∫
r(t)⊤r(t)dt+ λ

p∑
j=1

||bj ||2, s.t. L̃b = 0qk, (6)

where r(t) = y(t) − Zc(t)Φ̃(t)bc − Z(t)Φ̃(t)b ∈ Rn and λ is a tuning param-
eter that controls the strength of the group-Lasso penalization. The proposed
estimator has the same desirable properties as its counterparts in the classical
regression framework (Lin et al., 2014) and in the functional case with scalar
response (Sun et al., 2020). The zero-sum constraints for each composition
guarantee that the estimator would remain unchanged under the transforma-
tion X(t) 7−→ SX(t), where S = diag(s1, . . . , sn), with si > 0 for i = 1, . . . , n.
Furthermore, the constraints ensure that the proposed methodology is subcom-
positional coherent: if we knew that some coefficient curves of β(t) are zero
and estimated the model using the compositions formed by excluding the parts
associated with those curves, then the resulting estimator would be unchanged.
Finally, a direct consequence of the symmetric formulation of the problem (6) is
that the solution is invariant under any permutation of the components of each
composition.

3.3 Computation

We propose to solve the convex optimization problem (6) using an augmented
Lagrangian algorithm (Bertsekas, 1982). For a detailed review of the method
and its extensions with applications in Statistics and Machine Learning, see
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Boyd et al. (2011). The problem (6) can be rewritten as

argmin
b,bc

1

2
b⊤Kb− b⊤J +

1

2
b⊤c Mbc − b⊤c P + b⊤c Qb

+ λ

p∑
j=1

||bj ||2, s.t. L̃b = 0qk,

(7)

where the matrices containing functional inner products with weighting func-
tions are denoted byK =

∫
Φ̃(t)⊤Z(t)⊤Z(t)Φ̃(t)dt ∈ Rpk×pk, J =

∫
Φ̃(t)⊤Z(t)⊤y(t)dt ∈

Rpk,M =
∫
Φ̃c(t)

⊤Zc(t)
⊤Zc(t)Φ̃c(t)dt ∈ R(pc+1)k×(pc+1)k, P =

∫
Φ̃c(t)

⊤Zc(t)
⊤y(t)dt ∈

R(pc+1)k and Q =
∫
Φ̃c(t)

⊤Zc(t)
⊤Z(t)Φ̃(t)dt ∈ R(pc+1)k×pck.

Since bc is involved neither in the penalty term nor in the constraint, the
optimization problem can be restated as

argmin
b

1

2
b⊤K̃b− b⊤J̃ + λ

p∑
j=1

||bj ||2, s.t. L̃b = 0qk, (8)

where K̃ = K −Q⊤M−1Q ∈ Rpk×pk and J̃ = J −Q⊤M−1P ∈ Rpk. Then,
once the solution b̂ is obtained, the estimate of the coefficient associated with
the control variables is b̂c = M−1(P −Qb̂).

The augmented Lagrangian associated with problem (8) is

Lρ(b,u) = −b⊤J̃ +
1

2
b⊤K̃b+ λ

p∑
j=1

||bj ||2 +
ρ

2
||L̃b||22 + u⊤L̃b,

where u ∈ Rqk is the Lagrange multiplier and ρ is the penalty parameter.
The augmented Lagrangian method finds the solution of the original problem
iterating between a minimization step and a dual ascent step. The procedure
for a fixed λ is summarized in Algorithm 1. We allow the penalty parameter ρ
to increase in each iteration if the error does not decrease sufficiently over the
previous iteration. The adjustment scheme follows the guidelines in Bertsekas
(1982, p. 123). The first step of the algorithm updates

bk ← argmin
b

Lρk−1(b,uk−1),

and it is equivalent to solving a standard group-Lasso problem. In our imple-
mentation, we employ the Alternating Direction Method of Multipliers (Boyd
et al., 2011), but other routines can be used to solve the problem. When the

model is fitted for a path of λ, the solutions û and b̂ associated with the previous
penalty term are used as a warm start for the subsequent iteration.

As noted before, the functional compositional predictors and the response
variable are observed at each calendar year and not continuously ∀t ∈ T . There-
fore, all the integrals involved in the optimization problem have to be computed
from discrete-time observations. In our study, we employ the trapezoidal rule,
which is equivalent to approximate the discrete-time data to continuous-time
curves by means of linear interpolation.
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Algorithm 1 Augmented Lagrangian method to solve problem (8)

Require: b0, ρ0,u0, ϵ, kmax

k ← 1
err0 ← max L̃b0

while errk−1 > ϵ & k ≤ kmax do
bk ← argminb Lρk−1(b,uk−1)

errk ← max L̃bk

if errk > 0.25errk−1 then
ρk ← 10ρk−1

else
ρk ← ρk−1

uk ← uk−1 + ρkL̃bk

k ← k + 1

4 Simulations

We performed a simulation study in order to compare the performance of our
proposal based on a constrained group Lasso (CGL) with two possible competi-
tors. The first candidate is a baseline method, that is, a standard group Lasso
in which the reference level r is chosen randomly (BGL). The second competi-
tor is based on a naive approach, which consists of estimating the log-contrast
regression model with the Lasso penalty of Lin et al. (2014) at each time t ∈ T
and smoothing the resulting estimates.

We generate the compositional data similarly to the previous works of Lin
et al. (2014), Shi et al. (2016), Sun et al. (2020). The discrete-time grid is equi-
spaced within the interval T = [0, 1] and consists of 20 time points t1, . . . , t20.
We consider scenarios with q = 4 compositions, each with pj components, j =
1, . . . , q. To introduce dependence between the covariates, we use a compound
symmetry correlation matrix ΣX ∈ Rpj×pj with unit variances and correlations
ρX . To account for time dependence, we consider a matrix ΣT ∈ R20×20 with
first-order autoregressive structure, unit variance and autoregressive parameter
ρT . For each observation i = 1, . . . , n, the j-th composition over time is obtained
by simulating wij = [wij(t1)

⊤, . . . ,wij(t20)
⊤]⊤ ∼ N (020pj , σ

2
X(ΣT ⊗ΣX)) and

then normalizing the counts as

wijl(tv) =
exp {wijl(tv)}∑pj

l=1 exp {wijl(tv)}
,

for i = 1, . . . , n, l = 1, . . . , pj and v = 1, . . . , 20. The number of bases for cubic
splines is set to k = 5 and the number of components pj is the same across
compositions and equal to p/q. Only 3 coefficients are non-null for each compo-
sition. The coefficient vectors are b1 = [1,−1, 0, 0, 0]⊤, b2 = [0, 0,−0.5, 1, 0]⊤,
b3 = [−1, 1, 0.5,−1, 0]⊤, bp1+1 = [0.5, 0, 0,−0.5, 1]⊤, bp1+2 = [0, 1,−1, 0,−1]⊤,
bp1+3 = [−0.5,−1, 1, 0.5, 0]⊤, bp2+1 = [0.5,−1,−1, 1, 0]⊤, bp2+2 = [0, 1, 1, 0, 0]⊤,
bp2+3 = [−0.5, 0, 0,−1, 0]⊤,
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Table 3: Means and standard errors (in parentheses) of false positive and false
negative rates for the three methods with SNR = 2, based on 100 simulations.

Configuration FPR(%) FNR(%)
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 0.04 (0.04) 0.39 (0.11) 1.54 (0.20) 3.58 (0.41) 3.67 (0.42) 10.42 (0.52)

50 40 4 0.00 (0.00) 0.36 (0.11) 1.32 (0.23) 2.67 (0.39) 3.42 (0.41) 10.67 (0.52)
50 100 4 4.06 (0.22) 7.18 (0.22) 8.84 (0.30) 0.25 (0.14) 0.42 (0.18) 8.83 (0.54)

0.2 0.6 50 40 1 0.14 (0.07) 0.64 (0.16) 1.68 (0.25) 3.50 (0.41) 3.67 (0.42) 10.67 (0.54)
50 40 4 0.00 (0.00) 0.79 (0.17) 1.39 (0.23) 3.42 (0.43) 3.67 (0.43) 11.08 (0.46)
50 100 4 4.08 (0.20) 7.28 (0.23) 9.12 (0.33) 0.75 (0.24) 1.50 (0.32) 8.58 (0.52)

0.6 0.2 50 40 1 0.00 (0.00) 0.32 (0.10) 1.50 (0.20) 3.92 (0.43) 4.00 (0.45) 10.00 (0.52)
50 40 4 0.04 (0.04) 0.64 (0.15) 1.29 (0.22) 2.83 (0.40) 3.92 (0.45) 10.58 (0.44)
50 100 4 3.91 (0.19) 6.98 (0.19) 9.41 (0.34) 0.92 (0.26) 1.17 (0.29) 9.00 (0.50)

0.6 0.6 50 40 1 0.00 (0.00) 0.71 (0.14) 1.43 (0.23) 4.33 (0.43) 4.75 (0.43) 10.67 (0.53)
50 40 4 0.07 (0.05) 0.93 (0.19) 1.21 (0.20) 3.08 (0.40) 3.08 (0.40) 10.33 (0.53)
50 100 4 4.39 (0.20) 7.57 (0.22) 8.99 (0.32) 0.92 (0.26) 1.17 (0.29) 9.92 (0.53)

bp3+1 = [1, 0, 0.5, 0,−1]⊤, bp3+2 = [0, 0,−0.5, 0, 0]⊤, bp3+3 = [−1, 0, 0, 0, 1]⊤.
We also consider scenarios with p = 40 and q = 1, with the same coefficients
and the same degree of sparsity as for p = 40 and q = 4. For simplicity, we do not
include either the intercept or other control variables. The response variables are
generated from the model (5), with error terms distributed as N (0, σ2), where
σ2 set to achieve specific signal-to-noise ratios (SNR). We simulated different
settings (n, p, q) = (50, 40, 1), (50, 40, 4), (50, 100, 4) and several combinations of
parameters σ2

X = 9, ρT = (0.2, 0.6), ρX = (0.2, 0.6), SNR = (2, 4). The tuning
parameters λ and k are selected by ten fold cross-validation and one-standard
error rule (Hastie et al., 2009, p. 244)

We use four different measures to compare our proposal with competi-
tors. The prediction error is calculated using the average prediction mean
square error

∑20
v=1 ||y(tv)− 1⊤

n β̂0(tv)−Z(tv)β̂(tv)||22/(20n) computed from an
independent test sample of size 1000. The estimation error is measured by∑p

j=1

(∫
T |β̂j(t)− βj(t)|2dt

) 1
2

/p. As variable selection measures, we use the

false positive rate (FPR) and false negative rate (FNR), where positives and
negatives refer to non-null and null coefficients, respectively. The naive method
does not include a procedure for the selection of coefficient curves, but only a
variable selection procedure at each time t, therefore, we select active predictors
based on empirical evidence. Consequently, to have a fair comparison, we use
the same criteria for all three methods. As in Sun et al. (2020), the estimated

index set Ŝ of non-null coefficients is defined as

Ŝ =

j :

(∫
T β̂2

j (t)dt
) 1

2

∑p
j=1

(∫
T β̂2

j (t)dt
) 1

2

≥ 1

p
, j = 1, . . . , p

 .

The means and standard errors of the performance measures for the scenario
with SNR = 2 are reported in Table 3 and 4. From Table 3, we can see that
the proposed CGL has a similar variable selection performance compared to
BGL when n > p, although the latter has the tendency to have higher false
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Table 4: Means and standard errors (in parentheses) of prediction and esti-
mation errors for the three methods with SNR = 2, based on 100 simulations.
Estimation errors are multiplied by 100.

Configuration Prediction error Estimation error
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 8.45 (0.02) 8.49 (0.02) 13.92 (0.11) 3.90 (0.04) 3.97 (0.04) 7.77 (0.04)

50 40 4 8.22 (0.02) 8.34 (0.03) 12.55 (0.08) 3.80 (0.04) 4.15 (0.06) 7.63 (0.05)
50 100 4 8.35 (0.03) 8.59 (0.04) 14.64 (0.10) 2.01 (0.02) 2.25 (0.03) 3.97 (0.02)

0.2 0.6 50 40 1 8.46 (0.03) 8.48 (0.03) 14.04 (0.13) 4.06 (0.05) 4.13 (0.06) 7.90 (0.06)
50 40 4 8.35 (0.03) 8.51 (0.03) 12.63 (0.09) 3.88 (0.04) 4.25 (0.06) 7.64 (0.06)
50 100 4 8.35 (0.03) 8.68 (0.04) 14.64 (0.09) 2.03 (0.02) 2.31 (0.03) 3.98 (0.03)

0.6 0.2 50 40 1 4.18 (0.01) 4.21 (0.01) 7.33 (0.07) 3.91 (0.04) 4.00 (0.04) 7.87 (0.05)
50 40 4 4.08 (0.01) 4.14 (0.01) 6.24 (0.04) 3.83 (0.04) 4.12 (0.05) 7.56 (0.04)
50 100 4 4.30 (0.02) 4.43 (0.02) 7.62 (0.06) 1.96 (0.02) 2.21 (0.02) 3.99 (0.02)

0.6 0.6 50 40 1 4.22 (0.01) 4.24 (0.01) 7.23 (0.08) 3.93 (0.04) 4.06 (0.05) 7.86 (0.06)
50 40 4 4.04 (0.01) 4.11 (0.01) 6.17 (0.03) 3.86 (0.04) 4.21 (0.06) 7.61 (0.04)
50 100 4 4.34 (0.01) 4.48 (0.02) 7.59 (0.06) 2.01 (0.02) 2.29 (0.02) 3.97 (0.02)

Table 5: Means and standard errors (in parentheses) of false positive and false
negative rates for the three methods with SNR = 4, based on 100 simulations.

Configuration FPR(%) FNR(%)
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 0.00 (0.00) 0.00 (0.00) 0.21 (0.09) 1.75 (0.34) 1.50 (0.32) 7.17 (0.43)

50 40 4 0.00 (0.00) 0.00 (0.00) 0.18 (0.08) 1.33 (0.31) 1.83 (0.35) 7.83 (0.33)
50 100 4 1.14 (0.11) 3.48 (0.17) 4.57 (0.23) 0.00 (0.00) 0.00 (0.00) 5.08 (0.51)

0.2 0.6 50 40 1 0.00 (0.00) 0.00 (0.00) 0.14 (0.07) 2.50 (0.38) 2.33 (0.38) 6.67 (0.44)
50 40 4 0.00 (0.00) 0.04 (0.04) 0.11 (0.06) 1.33 (0.31) 1.75 (0.34) 7.25 (0.37)
50 100 4 1.37 (0.13) 3.93 (0.18) 5.12 (0.22) 0.17 (0.12) 0.08 (0.08) 6.25 (0.49)

0.6 0.2 50 40 1 0.00 (0.00) 0.07 (0.05) 0.18 (0.08) 2.58 (0.39) 2.67 (0.39) 7.50 (0.37)
50 40 4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.58 (0.33) 1.58 (0.33) 8.33 (0.37)
50 100 4 1.30 (0.13) 3.53 (0.17) 4.23 (0.19) 0.00 (0.00) 0.17 (0.12) 5.17 (0.46)

0.6 0.6 50 40 1 0.00 (0.00) 0.00 (0.00) 0.14 (0.07) 2.67 (0.39) 2.67 (0.39) 7.08 (0.46)
50 40 4 0.00 (0.00) 0.04 (0.04) 0.11 (0.06) 1.75 (0.34) 1.83 (0.35) 7.67 (0.35)
50 100 4 1.24 (0.13) 3.98 (0.18) 5.28 (0.23) 0.17 (0.12) 0.33 (0.16) 5.67 (0.49)

positive rates. This behavior is due to the automatic inclusion of the randomly
chosen baseline for BGL and is, in fact, even more pronounced for q = 4. The
advantages of the proposed CGL can be appreciated for the scenarios with
p > n, where it clearly outperforms competitors. As seen in Table 4, the
proposed CGL performs slightly better in terms of prediction and estimation
error and, as before, the difference with the competitors is emphasized for p > n.
Furthermore, increasing the correlation between the components leads to lower
prediction errors, regardless of the method. This is because a small correlation
determines few dominating components in each composition. As expected, the
naive method has inferior performance in terms of all the measures in all the
settings, since it is an unsophisticated approximation of functional nature of the
data. Another expected behavior can be seen from Tables 5 and 6, which show
that increasing the SNR leads to improved performance.
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Table 6: Means and standard errors (in parentheses) of prediction and esti-
mation errors for the three methods with SNR = 4, based on 100 simulations.
Estimation errors are multiplied by 100.

Configuration Prediction error Estimation error
ρX ρT n p q CGL BGL Naive CGL BGL Naive
0.2 0.2 50 40 1 4.29 (0.01) 4.31 (0.01) 7.71 (0.08) 2.98 (0.03) 3.05 (0.03) 5.97 (0.04)

50 40 4 4.30 (0.01) 4.36 (0.02) 6.78 (0.05) 2.85 (0.03) 3.08 (0.04) 5.71 (0.05)
50 100 4 4.31 (0.01) 4.46 (0.02) 8.75 (0.09) 1.53 (0.02) 1.71 (0.02) 3.28 (0.02)

0.2 0.6 50 40 1 4.30 (0.02) 4.33 (0.02) 7.90 (0.11) 3.00 (0.03) 3.09 (0.03) 6.02 (0.05)
50 40 4 4.28 (0.01) 4.34 (0.02) 6.71 (0.06) 2.86 (0.03) 3.09 (0.04) 5.69 (0.05)
50 100 4 4.46 (0.02) 4.61 (0.02) 8.90 (0.08) 1.52 (0.02) 1.72 (0.02) 3.29 (0.02)

0.6 0.2 50 40 1 2.21 (0.01) 2.22 (0.01) 4.25 (0.05) 2.93 (0.03) 3.02 (0.03) 6.00 (0.04)
50 40 4 2.17 (0.01) 2.19 (0.01) 3.49 (0.03) 2.85 (0.03) 3.04 (0.04) 5.72 (0.04)
50 100 4 2.22 (0.01) 2.28 (0.01) 4.57 (0.04) 1.51 (0.02) 1.68 (0.02) 3.28 (0.02)

0.6 0.6 50 40 1 2.18 (0.01) 2.18 (0.01) 4.15 (0.05) 3.02 (0.04) 3.07 (0.04) 6.03 (0.04)
50 40 4 2.11 (0.01) 2.14 (0.01) 3.36 (0.03) 2.92 (0.03) 3.17 (0.04) 5.81 (0.04)
50 100 4 2.24 (0.01) 2.32 (0.01) 4.61 (0.05) 1.53 (0.02) 1.72 (0.02) 3.30 (0.02)

5 Results

The proposed functional concurrent regression model with compositional co-
variates is fitted separately for males and females, since the trajectories of the
causes of death have profoundly different characteristics. We use cubic spline
bases and the penalty parameter λ as well as the number of basis functions k
are selected through leave-one-out cross-validation, due to the limited sample
size, and one-standard error rule.

As a by-product of the regression model results, we can measure the relative
importance of causes in the j-th age class by considering the relative squared
L2 norm of the group-specific coefficients between years t and t+ 1

pj∑
l=1

∫ t+1

t

|βjl(t)|2dt

/
4∑

j=1

pj∑
l=1

∫ t+1

t

|βjl(t)|2dt .

The results are reported in Figure 1 and show that, for both men and women,
the most important age class is 40–64. The reason can be attributed to the inclu-
sion of countries from Eastern Europe, for which the compositional trajectories
in the age group 40–64 are very different from the other high-longevity nations.
The result is consistent with the demographic literature, in which traditional life
expectancy decomposition methods are applied longitudinally for single coun-
tries. For example, Meslé (2004) shows that in many former Soviet countries,
decreases in life expectancy in the period 1965–2000 for males can be attributed
to the rise in mortality at working ages. This is also in line with the substantial
sex difference in the contribution of the age group 5–39. Another expected find-
ing is the decline in importance for the age group 0–4, regardless of sex, which
is associated with a progressive reduction in infant mortality. We also notice
an increasing importance of age class 65+ for men. This can be explained by
the faster progress of men in reducing heart disease-related mortality in recent
decades, a pattern observed by Feraldi and Zarrulli (2022).
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Figure 1: Relative magnitude of the age group–specific coefficients for females
and males.

Regarding the results relative to specific causes, it is worth recalling that the
interpretation of coefficients for the log-contrast model is different from the stan-
dard linear regression model. The main reason lies in the zero-sum constraint,
which reflects the fact that one component increases its relative importance only
if one or more of the others decreases (Coenders and Pawlowsky-Glahn, 2020).
For the model (5), it can be shown that the following interpretation holds at
each time t. Multiplying by a factor c the ratio of one component βjl(t) of the j-
th composition over each of the other parts βjm(t),m = 1, . . . , j−1, j+1, . . . , pj
leads to a change of log(c)βjl(t) in the expected value of the response variable.
Equivalently, we can also interpret the coefficients jointly as follows. The ex-
pected value of the response variable grows when increasing the relative impor-
tance of components with positive coefficient and reducing that of components
with negative coefficient. However, interpretation over time is not straightfor-
ward and we made use of additional plots to elucidate it, following Sun et al.
(2020). The idea is to compare the smoothed trajectories of log compositions
for three clusters of countries with the estimated coefficient curves. For each
predictor and each year, the nations are divided into three groups character-
ized by low, medium and high life expectancy, thus giving rise to time-varying
partitions. For each group, the smoothed values together with their 95% confi-
dence bands are calculated using local regression. In this way, we can also check
whether our model describes relationships encountered in raw data. Figure 2
shows the resulting plots for four relevant causes. The graphs show that our
model provides realistic results. We observe that increases (decreases) in the
difference of the prevalence of a cause of death between high and low longevity
countries are reflected in increasing (decreasing) coefficient curves. For example,
considering the age class 40–64 for females, in the ’60s, countries with higher
prevalence of death by neoplasms and lower by circulatory diseases have higher
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Figure 2: Smoothed curves of log composition of some causes of death for three
clusters of countries, with the estimated coefficient curves below. For each pre-
dictor and year, the nations are divided into three groups characterized by low
(in yellow), medium (in light blue) and high (in green) life expectancy.
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Figure 3: Estimated coefficient curves for the four age classes, males.

life expectancy. In subsequent years, the difference in terms of prevalence of
neoplasm between high- and low-longevity countries increases and this is re-
flected in the increasing estimated curve, while the reverse holds for circulatory
diseases.

The estimated coefficient curves for males are reported in Figure 3. The
positive increasing trend of neoplasms in age classes 5–39 and 40–64 is a clear
effect due to substitute mortality, which has been defined “that mortality which
results from a decrease in another specific disease” (Van De Water, 1997). That
is, in many countries with high longevity, cancer mortality has become the main
cause of death due to the reduction of other conditions, such as those related
to the circulatory system. In fact, circulatory diseases can be seen to have a
negative effect for all age groups, excluded 0–4. Another cause with a negative
decreasing effect in age class 5–39 is digestive diseases. It can be linked to the
high incidence of this class of diseases, particularly liver cirrhosis, observed in
early adulthood for Eastern European nations (Blachier et al., 2013) and other
Commonwealth countries, such as the UK (Lewer et al., 2020). For the age
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Figure 4: Estimated coefficient curves for the four age classes, females.

class accounting for senescent mortality, the effect of circulatory diseases is neg-
ative and strongly increasing, concurrently with the positive increasing effect of
nervous, respiratory and infectious diseases. These are conditions whose suscep-
tibility is higher in the elderly. The estimated positive increasing effect reflects
the process of population aging, that is, the increase in proportion of population
aged 65 and over, which is particularly vulnerable to the aforementioned dis-
eases. It is interesting to highlight the sign change of infectious diseases, which
means that in the first period this condition was associated with low-longevity
countries.

The results for females are reported in Figure 4. Compared to males, the
increasing positive effect of neoplasms and the increasing negative effect of cir-
culatory diseases in age class 40–64 overshadow all others in terms of magnitude.
In this age group, differently to males, skin and urogenital diseases are selected.
On the contrary, endocrine and infectious diseases, as well as lung cancer, are
not included. One possible explanation for the non-inclusion of lung cancer is its
high mortality rate in both low- and high-life expectancy countries for women
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(Jani et al., 2021). In the senescent age group, the effect of respiratory diseases
is positive decreasing and, unlike males, there is an increase in the prevalence
of urogenital diseases over time for high-longevity countries. This cause, which
is also selected for age classes 40-64, appears to be a sex-specific cause.

To assess the stability of the selection procedure, we generated 500 bootstrap
samples and used leave-one-out cross-validation to select the tuning parameters,
as for the model estimated with the original data. The results reported in Figure
5 show that the variable selection is quite stable. In general, our proposal
appears to be able to select the relevant predictors, at the cost of including
some causes which may not have much effect on life expectancy. This is the case
of external diseases in the age class 5–39 for both sexes, as well as neoplasms
in the age class 5–39 for females and lung cancer and circulatory diseases in
the age class 40–64 for males. On the other hand, infectious diseases for the
age group 0–4 is selected in more than 70% of the bootstrap samples for both
sexes, indicating that it may play an important role, although its coefficient is
estimated zero.

6 Discussion

We introduced a functional regression model with compositional covariates in
the spirit of the proposal by Sun et al. (2020), extending their work to the
relevant framework of a functional response. The model allows us to explain
the evolution of life expectancy at birth for several countries as a function of
the compositions derived from cause-specific mortality rates of four distinct age
groups. The method involves a B-spline expansion of the unknown functional
coefficients coupled with a group-Lasso penalty, enabling variable selection at
the function level and consequently high interpretability of the results. The
methodology is implemented within the R package fcrc, available at https:
//github.com/emanuelegdepaoli/fcrc, where the code for reproducing the
analysis, the simulation studies and all images of the paper is also included.

It is worth noting that causes of death cannot be regarded as causal drivers
of overall mortality (life expectancy). The main reason is that the cause of death
and mortality occur simultaneously, so one cannot be the cause of the other.
It would be more sensible to include risk factors (e.g. life–styles, pollution,
etc.) to assess a causal link with mortality. However, to our knowledge, there
is no harmonized and sufficiently high quality cross–country data over time on
risk factors to do that. Causes of death data are available, instead and while
they cannot be considered really “drivers” of overall mortality we can see them
as mediators between risk factors and life expectancy. Therefore such analysis
can indirectly provide additional insights on the epidemiological trajectories of
countries.

One major finding is that life expectancy is mainly driven by mortality
at age 40–64 for women, while for men, also 65+ and 5–39 age groups are
relevant. Not surprisingly, we found that circulatory diseases are increasingly
relevant in determining the life expectancy of countries: the lower the relative
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importance of circulatory diseases, the higher the life expectancy. We also
found an increasing relevance of digestive diseases for young men and women
and of lung cancer for young men only. Other results, such as the increasingly
positive effect of neoplasms at age 40–64 and of diseases of nervous system at
age 65+ (that is, the higher the relative importance of these causes, the higher
the life expectancy) can be explained in terms of “substitution effect”, which
means that the increasing relevance of these causes is an indirect effect of the
reduction of other causes. We should keep in mind that the sample is made up of
several countries with a different pattern of overall and cause-specific mortality.
In particular, Eastern European countries that underwent a serious mortality
crisis after the fall of the Soviet Union have a peculiar pattern that might have
driven some of these results.

The proposed model allows us to simultaneously consider all causes of death
and age groups in determining the evolution of overall mortality. This is increas-
ingly important, since it has been observed that the composition of cause-specific
mortality is getting increasingly diversified (Bergeron-Boucher et al., 2020), thus
making analyses based on a single cause of death less reliable.

We consider the summary measure of life expectancy at birth, but other
measures such as the modal age at death Canudas-Romo (2008), which is not
affected by infant mortality, or lifespan disparity Vaupel and Canudas-Romo
(2003), which is a measure of compression of age–specific mortality, can be used
as a response variable, providing further insights on the evolution of mortality
in high income countries.
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