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Abstract

In this paper, we introduce a novel framework in longevity study,
operating on the statistical approach of the Age–Period–Cohort frame-
work by leveraging the skew-normal distribution and Bayesian estima-
tion. We propose a specific application to gender gap analysis and
forecasting. By employing mortality data from the Human Mortal-
ity Database in the USA, our study contributes a two-fold advance-
ment. First, we present a novel perspective on gender gap analysis and
forecasting, improving the current literature. Second, we contribute
an improvement to the statistical framework for Age–Period–Cohort
analysis. The proposed model offers invaluable insights applicable to
healthcare planning and public interventions, providing a comprehen-
sive snapshot of the gender gap across the population, and indispens-
able information for devising healthcare strategies.
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1 Introduction
Longevity gains are one of the most fascinating achievements of the mod-
ern era. How these achievements evolved, are evolving and how they are
expected to change in the near future is a matter of continuing debate. Life
expectancy increases have nourished optimistic views about the maximum
human life expectancy ([34, 45, 3, 51]) and disproving pessimistic specula-
tions on an impending ceiling on life expectancy for humans ([17, 36, 37, 38,
35, 13]). The steady rise in life expectancy at birth has posed challenges to
all of governments, public health systems, and pension plans, giving pivotal
roles to longevity analysis. These needs necessitate sophisticated statistical
frameworks.

Challenges may include how longevity dynamics are developing over time,
considering the heterogeneity and thus longevity gaps among different pop-
ulations. Specifically, how females outlive males is the most discussed gap in
population studies. The mortality risk due to gender results from a poten-
tially complex combination of single-risk factors and, despite growing interest
in modelling overall mortality (such as death counts or mortality rates), noth-
ing has been done to advance modelling of the gender gap. Working directly
on the ratio provides relevant benefits. Indeed, one of the main concerns
in longevity modelling is the simultaneous dynamics between males and fe-
males, which should be included in order to guarantee reliable estimations
through coherent forecasting ([6, 8, 39, 40, 44]). As mentioned by Li and Lee
(2005) [25], forecasting the mortalities of two populations separately tends to
produce a greater difference, even when using similar methods. Directly ex-
ploiting the gender ratio as a unique variable will undoubtedly provide more
insightful information reducing the complexity/parsimony–interpretability
trade-off, in statistical modelling. Since the sex ratio appears to be less sensi-
tive to mortality level ([5, 28, 14]), it offers a better picture of the disparities
by age than the absolute sex differences of the death rates.

In this paper, we use a sex-ratio approach to study gender differences:
we analyse the logarithm of the ratio of age-specific mortality rates between
males (mM

x,t) and females (mF
x,t) over time.

SRx,t = log

(
mM

x,t

mF
x,t

)
(1.1)

This measure in Eq. 1.1 is useful for several reasons: it allows an implicitly
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gender-consistent model to be defined, it is less sensitive to the general level
of mortality than the absolute difference in deaths [7], and, finally, it has a
well-defined and known shape [28].

Generally, the sex ratio for age-related mortality is characterised by a
peak and a hump. The peak, which is the highest and most concentrated,
coincides with youth and is generally attributed to young males engaging in
riskier behaviours. The hump occurs during adult ages and is due primarily
to excess male mortality from cancer [7]. According to Meslé (2004) [28] we
set the threshold age, between the peak and the hump, at 45 years. We will
focus only on the peak, i.e. on mortality differences between the sexes at
younger ages.

The disparities in infant mortality between males and females are minimal
across all periods, with differences beginning to increase during adolescence
(see Figure 1). In many cases, male mortality peaks more than three times
higher than that of females and this trend remains consistent over the years
without any significant shift in the age at which the peak occurs.

The Lexis surface is useful to visualize changes in a phenomenon with re-
spect to ages (vertical lines), periods (horizontal lines) and cohorts (diagonal
lines). We report here the Lexis surface of the sex ratio for the data that we
will later use to test and apply the proposed model (US, 1960–2020).

The most interesting period is between the second half of the 1970s and
the second half of the 1990s. During these years, the gap widened, only to
narrow sharply after 1995. The increase in differences mainly affected the
upper age groups and cohorts born between the 40’s and 50’s. The causes of
these changes can be found in the literature [47, 20, 42].

Through the proposed model, we aim at identifying each point in the
Lexis surface as the sum of an intercept, an age effect, a period effect and a
cohort effect.
To do so, we propose a Bayesian approach for modelling and forecasting the
changes in the sex ratio in three components, i.e. Age, Period, and Cohort.
In particular, we propose the Age–Period–Cohort modelling combined with
a probabilistic assumption on the sex ratio. Specifically, we consider the
sex-ratio variable to follow a skew-normal distribution.

The skew-normal distribution has recently been used in the study of
longevity and in mortality modelling (see [27, 1, 50]) because of its con-
venient shape to fit the age-at-death distribution at certain ages. We instead
propose to use the skew-normal to leverage shape and scale parameters to
obtain accurate estimates of the sex ratio. We apply and test the proposed
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Figure 1: Lexis Surface of the Sex Ratio of the Age-Specific Mortality Rates in
US between 1960 and 2020. Data source: HMD

modelling to study the gender gap in youth mortality in the United States.
In the US, more than 30% of deaths at young ages are due to external

causes (unintentional injuries) [19] and the issues of road accidents and vio-
lent and risky behaviour among young people are often at the centre of public
debate.

The remaining part of this work is organized as follows. In Section 2,
we describe the Age–Period–Cohort models and offer a review of methods
for solving the identification problem. Section 3 is devoted to the extensive
explanation of the model for estimating and forecasting the sex ratio in mor-
tality in a Bayesian framework, and Section 4 contains the results from that
model. Finally, in Section 5 we discuss the results and conclude.
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2 Age-Period-Cohort Model
The Age-Period-Cohort model (APC) is used to study a time-specific phe-
nomenon distinguishing the effects that the variations in age, years, and
cohorts have on the phenomenon analysed [49].

An APC model describes the target variable Y (the phenomenon studied)
as a function of the I ages, the J periods and the K cohorts, where K =
I + J − 1.
In the OLS regression framework, we can write the APC model in matrix
notation treating ages, periods and cohorts as categorical variables [15][32],
as follows:

Y = Xβ + ϵ (2.1)
Where Y is a (I×J)×1 outcome vector; X is the design matrix consisting

of "dummy variable" column vectors of dimension (I ×J)× (I +J +K− 2);
β is the (I+J +K−2)×1 vector of coefficients (extended form in Equation
2.2) and ϵ is a (I × J)× 1 vector of residuals.

β = (α, βA
1 , . . . , β

A
I , β

P
1 , . . . , β

P
J , β

C
1 , . . . , β

C
K) (2.2)

This means that the value yij, relative to age i-th and year j-th is given
by a multiple linear regression:

yij = α + βA
i + βP

j + βC
k + ϵij (2.3)

Where: α is the intercept, βA
i is the i-th age effect (i = 1, . . . , I), βP

j

is the j-th period effect (j = 1, . . . , J), βC
k is the k-th cohort effect (k =

1, . . . , I + J − 1) and ϵij represents the residuals.

By treating the variables age, period and cohort as categorical to allow
for nonlinear effects and including the intercept, we have to solve the problem
of over-parametrization of the model. In accordance with the literature ([10,
48, 15]), we deal with this problem by using the first category for each of the
three variables as a reference, fixing the first set of parameters equal to zero:

βA
1 = βP

1 = βC
1 = 0 (2.4)

However, the model suffers from a lack of identifiability, due to the linear
dependency among the three components: Cohort = Period-Age. In Eq.2.1,
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the design matrix is singular with one less than full column rank, therefore
it is not invertible. This implies that the Ordinary Least Squares (OLS)
estimator of the matrix regression model in Eq. 2.1 is not uniquely defined,
there are infinite solutions to the equation:

β̂ = (XTX)−1XTY (2.5)

All of the infinite solutions fit the APC model equally well and correspond
to the best fit [11], moreover, according to Holford (2014) [22] the predicted
values of the outcome from a linear extrapolation are identifiable and this
allows forecasting of the phenomenon.

As is known in the literature [10, 48, 15], it is the linear trend of the
three effects that is not identified, while the non-linear part is identified.
This means that: taking any of the infinite solutions of the Eq. 2.5, the slope
of the three effects will be different, but the deviations from the trend will
be the same no matter which solution is chosen [32]. Moreover, Clayton and
Schifflers (1987) [12] show that in the model, the drift is also identified. The
drift is the sum of the period and cohort trend, i.e. the overall linear trend
of the phenomenon. It’s not possible to decompose the drift between period
and cohort.

To better understand the problem of non-identifiability, in literature ([32,
33, 15, 41]), it is often defined that the infinite number of best-fitting solutions
to Eq. 2.5 all lie on the "line of solutions". This means that given any
solution vector β̂c obtained under the constraint in Eq. 2.4, any other best-
fitting solution can be obtained as:

β̂′
c = β̂c + sv, (2.6)

where v is the null vector for X and s is a scalar.

There are several solutions to the problem of identifiability, the most used
is imposing additional constraints on the effects in order to provide a unique
solution.
Following the review made by Fosse and Winship (2019) [15], we can di-
vide the solving methods into two macro groups: Without Measured Causes
and With Measured Causes, where the Measured Causes are measures of the
causes associated with the three variables of the Age-Period-Cohort model.
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We ignore methods using these auxiliary measures since we propose mod-
elling based only on one observed variable.
In the remaining methods, they are divided into two groups Explicit Con-
straints and Mechanical Constraints. The former are those that have been
used more over time and since the first APC modeling proposals. There are
various types of explicit constraints: the most basic are the so-called Drop
One-Variable, which simply consists of removing one (or more) of the three
dimensions (Age, Period and Cohort). Excluding a variable is equal to im-
posing strict constraints that its linear and nonlinear effects are zero, which
is often an overly stringent assumption. Moreover, this clearly results in the
loss of potentially interesting information on one of the three dimensions.
Another example of explicit constraints are the Equality Constraints. The
idea is to add a constraint to reduce the rank of the design matrix X, make
it non-singular and thus invertible so as to obtain a single OLS β̂ estimator
in Eq. 2.5. This corresponds to selecting only one of the solutions in the
’solution line’ in Eq. 2.6 [32]. The constraint consists to fix two of the effects
of one of the three components equal to each other (example: βA

i = βA
i+1).

The main problem of equating two groups is essentially that it is equivalent
to assigning specific values to each of the unknown linear effects. This may
turn out to be too strong an assumption and it must be based on theoretical
hypotheses and knowledge of the phenomenon. There are different variations
of Equality Constraints based on the constraint(s) one decides to use. For
example, it is possible to set the first and last values of one of the effects of
the three dimensions equal to each other, which corresponds with setting the
linear effect of that component equal to zero.

The Mechanical Constraints group contains various solutions proposed in
recent years, the two most widely used techniques being Intrinsic Estimators
(IE) and Hierarchical age-period-cohort models (HAPC).
The Intrinsic Estimators are part of the Moore-Penrose (MP) estimators.
This technique works in two stages: least-squares and norm-minimum. The
first stage is simply the calculation of the least-squares solution set in Eq. 2.5.
The second stage selects the particular set of solutions such that the square
root of the sum of the squared estimates is as small as possible. The main
problem of the MP estimators is that the solution defined depends on the
design matrix used in Eq. 2.1. For example, by changing the grouping into
classes of the three variables (i.e. 1-year or 5-year age classes) or mixing their
order in the model (ACP). Fosse and Winship [16, 15] report some qualities
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of this estimator: clearly it produces a unique solution, it has minimum
sampling variance among all possible estimators based on the same design
matrix and it is unbiased. This technique is also much criticised for the lack
of robustness of the estimation with respect to certain aspects: for example,
with respect to the number of categories used for the three components (age,
period and cohort) and with respect to the choice of reference category.
Lastly, Hierarchical age-period-cohort models use a mixed-effects approach
[32]. This method produces a unique identified set of effects without the need
for theoretical assumptions and the imposition of explicit constraints. On the
contrary, several authors stated that this method introduces implicitly some
nonobviuos constraints [16].

See Table 1 for a schematic summary of constraints in APC.

Explicit Constraints
Drop-one variable Equality constraints

Pros Easiest technique to use
Most widely used technique

Knowledge-based and arbitrary
Transparent research decision

Easy to use

Cons Assumption stronger than necessary
Loss of potentially interesting information Very strong assumption

Mechanical Constraints
Intrinsic Estimator (MP) Hierarchical APC

Pros Unbiased estimator
Minimum sampling variance No need of theoretical assumption

Cons Lack of robustness Strong implicit constraints

Table 1: Selection of techniques to solve the problem of non-identifiability of
Age-Period-Cohort models based on review by Fosse and Winship (2019).
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3 Model
In this section, we describe the methodological background of our proposal,
useful for modeling the gender gap in longevity. Age–Period–Cohort (APC)
models can be expressed as a least-squares regression, where normality distri-
bution is assumed along with homoscedasticity of the errors [48]. We propose
an APC model assuming that the errors are distributed skew-normal, allow-
ing control and analysis of the error skewness. Moreover, Age–Period data
can exhibit unstable variability, possibly represented by increases in variance
with age [26]. Since the gender gap in mortality is a complex phenomenon,
distributed with respect to both age and period, assuming a constant vari-
ability appears very stringent.

Therefore, we relax the assumption of normality and homoscedasticity
(used in the OLS estimation), and leverage the skew-normal distribution
while also modelling the variance and the skewness.

As defined by Azzalini in 1985 [2], Z has a skew-normal distribution with
parameter λ ∈ R if:

f(z|λ) = 2ϕ(z)Φ(λz), z ∈ R (3.1)

where ϕ(·) and Φ(·) are the N(0, 1) probability density function and cumu-
lative distribution function, respectively.

If Z ∼ (λ), then the random variable Y = µ+σ2Z still has a skew-normal
distribution with a location parameter µ ∈ R, a scale parameter σ2 ∈ R+ and
a shape parameter λ. A transformation of the λ parameter is the skewness
parameter: τ = λ/

√
1 + λ2, −1 < τ < 1.

The probability density function of Y ∼ SN(µ, σ2, λ) is given by:

f(y; θ) = f(y;µ, σ2, λ) =
2

σ2
ϕ

(
y − µ

σ2

)
Φ

(
λ
y − µ

σ2

)
. (3.2)

It is easy to see in Eq. 3.1 and in Eq. 3.2 that, for λ = 0, the skew-normal
reduces to the normal distribution.

The mean and variance of Y are:

E(Y ) = µ+

√
2

π
σ2τ (3.3)

9



V ar(Y ) = σ2

(
1− 2λ2

π

)
. (3.4)

We assume that the sex ratio of the gender-age-specific mortality rates
(SRx,t = log

(
mM

x,t

mF
x,t

)
), follows a skew-normal distribution for each age x and

year t:
SRxt ∼ SN(µxt, σ

2
x, λx). (3.5)

By leveraging the properties of the skew-normal distribution, we can model
the sex ratio, assuming that µxt, σ

2
x, λx follow the regression structure given

by:

µxt = α + βA
x + βP

t + βC
t−x (3.6)

where α is the intercept, βA
x is the xth age effect (x = 1, . . . , X), βP

t is the
tth period effect (t = 1, . . . , T ), and βC

t−x is the (t− x)th cohort effect.

f(σ2
x) = γX (3.7)

h(λx) = ωX (3.8)
where X is the design matrix for the explanatory variable (i.e. Age) for the
scale and shape parameters.

Note that, in Eq. 3.6, we choose to model the location parameter based
on the APC framework, exploiting the categorical coding for the Age, Period
and Cohort variables. As a result, after the estimation procedure, we obtain
many parameters as the cardinality of the variables.

On the contrary, to ease the interpretation and improve the parsimony
of parameter estimation, for equations 3.8 and 3.7, we choose a canonical
regression framework in which the estimated coefficient is a scalar and f(·)
and h(·) are the logarithmic link function1 and identity function, respectively.

Therefore, linking to Eq 3.3, the point estimate for the sex ratio is given
by:

ŜRxt = E(SRxt) = µxt +

√
2

π
σ2
xτx =

= α + βA
x + βP

t + βC
t−x +

√
2

π
eγx

ωx√
1 + (ωx)2

. (3.9)

1ln(σ2
x) = γX ⇒ σ2

x = exp(γX)
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The total set of parameters to be estimated is:

θ = (α, βA
1 , . . . , β

A
X , β

P
1 , . . . , β

P
T , β

C
1 , . . . , β

C
T−X , γ, ω) (3.10)

To tackle the problem of non-identifiability of the model, it is necessary to
include external constraints (see Section 2). In the specific case analysed, the
change in the mortality gender gap at younger ages (x < 45) in the United
States between 1960 and 2020, we propose to use an Explicit Constraint
(see Section 2). By analysing this phenomenon, we can calculate the overall
linear trend (drift) of the sex ratio over these 60 years. Perhaps because of
the nature of the study variable, the drift is small (about +0.12% ), so we
use an equality constraint, setting the first and last period effects equal to
each other and, more specifically, equal to zero (Eq. 3.11):

βP
1960 = βP

2020 = 0. (3.11)

With this explicit constraint, the period effect is de-trended (i.e. it has
zero slope) and the unidentifiable linear effect is completely absorbed by the
cohort effect [22].

At the stage of interpreting the results, it should be kept in mind that
the estimated effect values are related to the imposed constraint, while the
non-linear trend can be interpreted independently of the constraint.

3.1 Implementation

Samples from the posterior distributions of the parameters were drawn by
using Hamiltonian Monte Carlo sampling and specifically using the stan
software package [43]. Stan and its interface in the R programming language
(R Core Team, 2017) allows the construction of a Hamiltonian Monte Carlo
sampling ‘no U-turns sampler’ [21] from a simple user specification of the
Bayesian model to be estimated. Hamiltonian Monte Carlo simulates move-
ment through the parameter space by analogy to a physical system where
the potential energy is equal to negative log-posterior [29], and it is a special
case of the more general Metropolis–Hastings algorithm for Markov chain
Monte Carlo sampling. Four parallel chains were constructed and used to
assess convergence to the better posterior distribution, each with 2000 sam-
ples, and the first half of each chain was used as a warm-up period. Gelman
and Rubin [18] split r̂ diagnostics are below the suggested 1.05 threshold
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and examination of trace-plots indicate sampler convergence to the target
distribution [18] [43].

Priors for the model hyper-parameters are: α ∼ t3(0.6, 2.5) for the inter-
cept and flat priors for all the APC parameters (βA, βP , βC) and the regres-
sion coefficients on shape and scale parameters.

We adopt weakly informative priors, but one of the potentialities of the
proposed framework is to be able to use a priori knowledge of the phenomenon
to provide more accurate estimates.

3.2 Forecasting

In this section, we leverage the framework in section 3 (excluding the con-
straint in Eq. 3.11) to focus on the temporal component, represented by
the period and cohort sets of parameters. The proposed forecasting method
falls into the context of the three-factor forecasting models that have been
emerging in recent years [9].

The idea behind the forecasting method is to fix the age effect estimated
by the APC method on the baseline time interval and to forecast the period
and cohort effects.

Suppose that we forecast the sex ratio h periods in the future for the
same set of age groups:

µx,T+h = α + βA
x + βP

T+h + βC
T+h−x. (3.12)

If T − x+ h < X (highest age), we use the observed cohort effects from the
data, otherwise we project new cohort effects.

We project the time series of period and cohort effects from the data, so
the forecasting functions need to be defined such that:

βP
T+h = fP

(
βP
1 , . . . , β

P
T

)
, and βC

T+h−x = fC
(
βC
1 , . . . , β

C
T+X

)
. (3.13)

We use the best ARIMA model for the projection of the two time series.
To select of the best ARIMA, we use the auto.arima function in the R
software [23]. This evaluates, via the Aikake Information Criterion (AIC),
which ARIMA model best serves for a specific time series.

The ARIMA model powerfully captures various patterns and trends in
time series data, making it a popular choice for forecasting future values in
fields like finance, economics, and demographics [4]. A brief description of
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the ARIMA models and the best ARIMA estimated with their parameters
and time series plots are shown in the Appendix.

Lastly, since, we assume heteroscedasticity (Eq. 3.9), we forecast the sex
ratio at age x in time T + h ( ̂SRx,T+h), leveraging the setting in Eq. 3.9.

4 Results
In this section, we show the results obtained by applying the model and pro-
vide a preliminary interpretation of the estimated APC effects.
In order to provide model estimates, we use high-quality 1×1 life tables from
the Human Mortality Database (HMD, 2021) [46], categorized by sex, for the
United States population due to its peculiar longevity behaviour – charac-
terized by stagnations and periods of slow improvements in life expectancy,
with interesting consequences for the cohort profile ([30, 31]).

The results for 1960–2020 are shown in Figure 2. It is important to
remember that this is only one of the possible estimates of the three effects
on the line of solutions; specifically, it is the solution in which the first and
last period effects are equal and equal to zero. The non-linear trend does not
depend on the chosen solution, so it can be interpreted from a demographic
point of view. It must be kept in mind that, by using age, period and cohort
as categorical variables in which the first category is used as a reference, each
effect must be interpreted as an addition to (or subtraction from) the base
level of the sex ratio, that is given by the intercept.

The intercept is 0.64, which means that the base level of the sex ratio,
when the three effects are zero, is equal to α = 0.64 ⇒ SR = exp(0.64) =
1.89. This means that, on average, males die almost twice as often as females
between the ages of 0 and 45.

Exploiting the benefit of the proposed framework allows us to provide
and discuss also the scale and shape estimation: the point estimate obtained
with the APC model is corrected with respect to the spread and the skewness
according to the relation in Eq. 3.3.

The regression models imposed on the scale and shape parameters in-
dicate that the two parameters behave differently with respect to the age
variable:

σ2
x = e−0.1·x
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Figure 2: From top to bottom: Age effects, reference category is age 0 (x = 0),
Period de-trended effects, reference categories are year 1960 and 2020 (p = 1960),
Cohort effects and drift, reference category is year 1915 (k = t− x = 1915).
Dotted lines represent Bayesian credibility intervals for the estimates. Data source:
HMD.

λx = 0.06 · x ⇒ τx =
0.06 · x√

1 + (0.06 · x)2

The scale parameter decreases exponentially with respect to the ages,
whereas the shape increases slightly. Given the relationship between shape
and skewness, we can observe the skewness trend with respect to age: it
increases between 0 and 18 years and then decreases.

It is possible to interpret the effects in Figure 2 as the contribution of each
component on the gender gap. The age effect represents the average profile
of the sex ratio with respect to age over the time interval considered. During
childhood, the differences are small; around age 3, there is a small drop in
the sex ratio compared to at age 0. At later ages, the gender gap increases,
peaking at age 23, after which it decreases, but remaining always higher than
the initial level. Thus, compared to the base level of mortality differences
between the sexes, increasing age increases the gap, in agreement with the
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Baseline period Intercept α Scale γ Shape ω
1960–1990 0.806 − 0.089 0.313
1970–2000 0.703 −0.099 0.099
1980–2010 0.69 −0.095 4.829

Table 2: Estimation of the intercept and regression coefficients for the pa-
rameters of the model on the baselines.

literature . In the solution obtained under the constraint in Eq. 3.11, the
period between 1960 and 1995 shows an increase in gender differences, with no
major effect afterward. In the literature, specifically concerning the United
States, many explanations can be found for the large period of variability in
the gender gap observed in the second half of the last century.

Analysing cohort effects via the chosen solutions shows that the first
cohorts contributed negatively to gender differences, thus indicating a con-
vergence in mortality between men and women. Cohorts born between the
years 45’ and 55’, however, show an increase in the gender gap, suggesting
that these cohorts experienced social conditions under which men were more
likely to die than women.

Out of sample To assess the robustness of our method to forecast pur-
poses, we performed an out-of-sample test over three-time windows (1960–1990,
1970–2000, and 1980–2010) with a 30-year baseline period to estimate Age,
Period, and Cohort effects, as well as the intercept and regression coefficients
for the shape and scale parameters. Thus, the subsequent years of each time
window (1991–2000, 2001–2010, and 2011–2020 respectively) have been used
as the out-of-sample set.

The base levels of the sex ratio in the baseline periods are similar to that
estimated over the entire period 1960–2020, with a reduction in the intercept
over time. The coefficient δ is negative in each of the three baseline periods,
indicating that the variance decreases exponentially as the ages increase.
Coefficient ω provides different trends in the three periods: in periods 1960–
1990 and 1980–2010, ω > 1, whereas, in the period 1970–2000, the shape
parameter increases slightly with ages.

To evaluate the goodness of the prediction, we compute the Root Mean
Square Error (RMSE) and the Mean Absolute Error (MAE), respectively
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defined as:

RMSE =

√√√√ 1

XT

X∑
x=1

T∑
t=1

(SRxt −ŜRxt)2,

MAE =
1

XT

X∑
x=1

T∑
t=1

| SRxt−ŜRxt|.

Period MAE RMSE
1991–2000 0.195 0.141
2001–2010 0.094 0.068
2011–2020 0.096 0.072

Table 3: RMSE and MAE for the three forecast windows.

As shown by both RMSE and MAE (see Table 3), the model is more
accurate in more recent forecasting windows. This can be attributed to the
years of greater variability in the sex ratio observed between the 1960s and
2000s and the rapid decline observed after 1995, which is hard to predict
(Figure 4 in the Appendix shows the forecast for period and cohort effects).
In the proposed framework, forecasts are mostly affected by period forecasts,
while cohort forecasts affect only younger cohorts.

We also analyse the model performances with respect to different ages
and years, using the relative differences (∆x,t) defined as follows:

∆x,t =

(
ŜRx,t

)
− (SRx,t)

(SRx,t)
.

The models appear to overestimate gender differences at younger ages
(Figure 3), due to the uncertainty added by the prediction of cohort effects.

The last heat map (1980–2010) is on a different scale and is strongly
affected by the dynamic exhibited in the year 2018. Indeed, looking at the
observed data, 2018 is a single case in which male mortality is lower than
female mortality.
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Figure 3: Relative differences ∆x,t between forecasted and the observed sex ratio
by age and year for each time interval of forecasting. Red hues indicate that the
model underestimates the gender gap, while blue hues indicate overestimation.
RMSE and MAE for each out-of-sample test are reported. Different scales are
used in each heat map.

5 Discussion and Conclusion
This paper extends and improves the statistical approach for Age–Period–
Cohort frameworks by introducing, for the first time, the modelling of sex
ratio in longevity using the skew-normal distribution in a Bayesian frame-
work. The adoption and the modelling of the scale and shape parameters
provide explicit accounting for the potential asymmetries and variability in
sex ratio mortality. Using data on USA mortality from the HMD database,
we describe the statistical details of our method introducing the Bayesian
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approach and the forecasting procedure, and we test the model accuracy in
the out-of-sample exercise over three contiguous but non-overlapping time
windows. Our investigation provides twofold insight into the related litera-
ture: i) We introduce an innovative statistical framework in the study of APC
aimed to model the sex ratio in a given population, ii) the study leverages
the double lens of the model accuracy evaluation and provides an assess-
ment of the demographic significance of our approach for the gender gap
in longevity. The suggested model provides valuable information that can
be used to improve healthcare and public policy. Indeed, healthcare plan-
ning can benefit from our approach, which provides a useful snapshot of the
magnitude of gender differences. Introducing the cohort effect, we can also
speculate that the gender difference which, in the recent past, was consid-
ered a natural public health target because of its size, might not be deemed
a significant problem today. In this regard, we have stressed the novelties
and implications of our proposal. Our model provides significant insights to
further discussion in population studies. In particular, we consider that the
cohort effect is a huge aspect to consider in gender gap analysis and forecast-
ing. Indeed, working on the sex ratio approach to implementing the cohort
effect is not straightforward because of the unique relationship between age,
time, and cohort. In the existing literature, we draw particular attention to
the work of Bergeron et al. 2018 ([6]) who preferred to work in a Lee–Carter
framework. None of the models considered include cohort effects to account
for specific survival in some cohorts. Nevertheless, it is widely believed to
be very likely that cohort components could improve the fit and forecast in
some populations (see e.g., Kjærgaard et al. [24]). In light of these aspects,
we do not deem it appropriate to directly compare our model with others
such as the Lee–Carter, which is clearly out of the scope of this proposal.
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Appendix
The ARIMA model comprises three parameters, namely p, d, and q, which
represent the order of auto-regression, differencing, and moving average, re-
spectively.
The autoregression component (AR) represents the relationship between the
current observation and its past values. The p in ARIMA(p,d,q) denotes
the order of autoregression, which specifies how many past time steps are
used to predict the current value. The integration component (I) refers to
the differencing of the time series data. Differencing involves subtracting the
previous value from the current value to make the data stationary. The d
in ARIMA(p, d, q) indicates the order of differencing needed to achieve sta-
tionarity. The moving average component (MA) represents the dependency
between the current observation and the error terms from past observations,
capturing the short-term dependencies. As usual, The q in ARIMA(p, d, q)
specifies the order of the moving average, indicating how many past error
terms are considered for predicting the current value.

Mathematically, the ARIMA(p,d,q) for the period effect (and equivalently
for the cohort effect) can be represented as:

d

∇βP
t = δ +

p∑
i=1

ϕi

d

∇βP
t−i + ϵt +

p∑
j=1

θjϵt−j (5.1)

Where
d

∇ represents the differencing operator that calculates the differ-
ence between consecutive observations at a lag of d time periods, δ is the drift
process, ϕi are the autoregressive parameters, ϵt are the error terms (normally
distributed with zero mean and variance σ2) and θj are the moving average
parameters.
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Figure 4: Period and cohort effects projected without any constraint in the three
different baseline time intervals and relative 10-year forecast using the best ARIMA
model.
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