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Abstract

Macro-level modeling remains the dominant approach in many demographic appli-
cations, including population projections. Individual-level models tend to require larger
amounts of data and very often cannot be estimated. The approach we introduce in
this article attempts to overcome these limitations. Using likelihood-free inference tech-
niques, we show that it is possible to infer the parameters of an individual-level model of
the reproductive process from a set of aggregate fertility rates. By estimating individual-
level quantities from widely available aggregate data, this approach can contribute to a
better understanding of reproductive behavior and its driving mechanisms. It also allows
for a more direct link between individual-level and population-level processes. We il-
lustrate our approach using data from three natural fertility populations. The models we
introduce can be readily applied in biodemography, to study the reproductive process in
non-human populations.
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1 Introduction
Modeling the age distribution of fertility rates is an essential step in a number of demographic appli-
cations. Some of this applications only require a very accurate fit to an observed schedule, as in the
generation of single-age rates from grouped data. This type of problems are usually handled with non-
parametric models, typically based on spline functions. Other applications require models that can fit
the data well at the same time they provide a well-defined, ideally small set of parameters. Preferably,
these parameters should represent quantities that can be interpreted in “demographic” terms. This
typically means ages associated with relevant characteristics of the fitted curve, like the age at which
the curve becomes no zero, the age at which it peaks, or the age at which it goes back to zero.

The interpretability of parameters is particularly relevant in a forecasting context, where it is useful
to associate a change in the value of the parameters with an underlying behavioral process, such as
fertility postponement or the diffusion of contraceptive methods.

One of the issues with most parametric models is that the interpretation of their parameters can be
elusive (Hoem et al., 1981). Even in the best cases, the relationship between mechanisms and param-
eters is ambiguous and indirect. After all, these models are defined one level above the level at which
behaviors are observed.

A potential solution to this problem is to model at the individual level. Such an approach would involve
four steps: 1) develop a model of the reproductive process; 2) use this model to generate synthetic data
and compute a set of simulated age-specific fertility rates (ASFR); 3) estimate the parameters of the
model by minimizing the distance between simulated and observed rates.

Although all of the building blocks have been available for a while, this approach has not yet been
systematically explored in full.

The tools and ideas required for the first of its steps have received the attention of a relatively small
but significant group of researchers that contributed to the development of the first analytical models
of the reproductive process (Gini, 1924; Henry, 1953; Sheps et al., 1973, among others).

These ideas where later explored using simulation methods, with the objective of incorporating more
complex, although basic characteristics of the reproductive process like age-dependent fecundability,
or to represent change over time in fertility rates (see: Ridley and Sheps, 1966; Barrett, 1971; Le Bras,
1993). The use of simulation methods allowed researchers to complete step 2, by generating synthetic
age-specific fertility rates from individual level models and drawing a direct connection between be-
havior and aggregate demographic indicators.

These contributions, however, were largely theoretical. Parameter values where borrowed from pre-
vious studies, or calibrated through trial and error until the simulated data would fit a given target
distribution.

Interest in these type of models dwindled after the 1980’s, just at the same time the first statistical
methods that would enable inference on complex simulation models were starting to emerge Rubin
(1984).

Likelihood-free inference methods, such as Approximate Bayesian Computation (ABC), have been
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researched extensively since then, providing a robust statistical framework to estimate the parameters
of computational models in a number of scientific fields Beaumont (2019). What we attempt to show
in the remainder of this paper, is that these advances in statistical computing provide the missing piece
to the program outlined above, allowing to infer quantities that describe the reproductive process at
the individual-level from aggregate fertility rates. More generally, the approach we introduce here
provides a clear roadmap to fully integrate behavioral mechanisms in the modeling and forecasting of
fertility trends.

All the results presented in this article are fully reproducible using the code and data available at
https://github.com/dciganda/comfert_natural.

2 Model
The simplest form of the reproductive process is the one in which the outcomes of the process, the
number and timing of births, are not a function of individual preferences. Louis Henry called this “nat-
ural fertility”, in an attempt to characterize a process that is exclusively determined by physiological
factors.

To illustrate our approach we use data from three natural fertility populations: Hutterites communities
from 1860 to 1914, the French-Canadian population from 1700 - 1750, and a subsample of the French
population from 1680 to 1760 ( see Section 3 for details).

A model of the reproductive process in a natural fertility context requires three basic inputs: The
moment when the process starts, typically defined as the age at marriage; the risk or probability of
a conception, known as fecundability; and the length of the period in which women are not able to
conceive following childbirth, know as post-partum amenorrhea.

We represent the reproductive experience of a cohort of women from birth to age 50 using a discrete-
time simulation model, in which time advances at fixed increments of one month. The age (in months)
at marriage for a woman i is simulated from a lognormal distribution with mean µm and standard
deviation σm.

Every month, married women who are neither pregnant nor amenorrheic are exposed to the risk of a
conception. We model this pattern using two polynomial basis:

ϕ(x) = ϕ1 · (3 ∗ x3s − 6 ∗ x2s + 3 ∗ xs) + ϕ2 · (−3 ∗ x3s + 3 ∗ x2s) (1)

Where f(x) is the fecundability of women during the reproductive window from age 10 to 50, and xs
is the reproductive window scaled in the 0-1 range. The coefficient that multiplies the first polynomial
basis, ϕ1, influences the height of peak fecundability, while ϕ2 influences the pace at which fecund-
ability decays until permanent sterility is reached at menopause. To determine whether or not woman
i conceives in a given month, a Bernoulli trial is simulated with probability ϕ(xi).

Figure 1 presents three patterns associated with different combinations of parameter values for the risk
of conception.
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Fig. 1 | Age Distribution of Fecundability for Different Combinations of Parameter Values. Al-
though it depends on only two parameters, the model used to represent the evolution of the risk of
conception across the reproductive life course captures a wide range of patterns.

After a conception is observed, women enter a non-susceptibility state (no risk of conception) for
the duration of the pregnancy, 9 months, plus the duration of post-partum amenhorrea, δ, which is
estimated together with the rest of the parameters of the model.

The model outputs individual reproductive trajectories, from which a set of simulated age-specific
fertility rates sf(x) can be computed. We then leverage the distance between simulated and observed
rates, of(x), to estimate the parameters of our model. This procedure is explained in more detail in
Section 3.5, after we describe the data used in our analysis.

3 Data
We use 3 high quality natural fertility dataset which provide full maternity histories plus information
on the dates of other relevant events in a woman’s life course like marriage, death, separation, and
death of spouse.
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3.1 Hutterites
The Hutterites are a Anabaptist community, originated in the XIV century in the Tyrolean Alps. After
a long history of migration in Europe and Asia, they relocated to North America at the end of the XIX
century where they still live today in self-sustained, largely isolated colonies.

Like many religious communities, the Hutterites oppose the use of birth control methods (Lee and
Brattrud, 1967; Ingoldsby and Stanton, 1988). What made them stand out, however, was how strictly
they adhered to these beliefs, at least until the second half of the 20th century. The marital fertility of
the Hutterite cohorts born until the early 1900s remained close to the theoretical maximum, with an
average of around 10 children per woman, providing researchers with an exceptional opportunity to
study the reproductive process under natural fertility conditions (Eaton and Mayer, 1953).

Another reason why the Hutterites became the gold standard for natural fertility research was their
custom of keeping detailed family records. These records, personally checked for consistency by
colony preachers, were made available for various scientific studies in the 1950s and 60s (Eaton and
Mayer, 1953; Mange, 1964). These data was extended in the course of one of these studies through
follow-up interviews, which resulted in complete maternity histories for 562 families Sheps (1965).

3.2 French-Canadian
BALSAC is a longitudinal population database that contains information on individuals and families
who lived in Quebec from the 17th century to the present. The information used in this article, that
concerns birth cohorts before 1750, was gathered using family reconstitution methods from parish
registers (Vézina and Bournival, 2020). Given the high quality of these records, the information on
XVII Century Quebec populations has become an important reference in the literature on natural
fertility (see: Clark et al., 2020; Larsen and Yan, 2000; Eijkemans et al., 2014, among others).

3.3 Henry
Another important dataset in the research on natural fertility is the Enquete Louis Henry. The informa-
tion on this dataset was gathered by Louis Henry... It contains data on life events for a sample of 378
parishes for the period 1670 to 1829 from parish registers and administrative records. The families in
a sub-sample of 40 rural parishes have been fully reconstituted.

3.4 Sample Sizes
To keep things simple, we model a process without death or union dissolution. Therefore, our data
belongs to “intact” marriages, i.e., marriages that do not dissolve by death or separation before the
woman reaches age 50. Table 1 contains the remaining sample sizes after we exclude censored trajec-
tories and records with incomplete information. Records with partial information were recovered in
some cases by imputing the month or day of events. The inclusion of imputed data does not signifi-
cantly affects our results.

While our simulated data belongs to a single birth cohort, in order to get reliable estimates our em-
pirical data is obtained from multiple cohorts. To minimize potential biases we kept a range of birth
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cohorts that are as homogeneous as possible with respect to the age at first marriage and the total
fertility rate (see appendix X). The cohorts included for each population are also displayed in Table 1

Table 1: Sample Information for the Three Natural Fertility Datasets

Nr. Marriages Nr. Births Cohorts
Hutterites 161 1726 1860 - 1914
XVIII Century Quebec 14303 110772 1722 - 1730
XVII - XVIII Century France 3235 18623 1680 - 1760

Figure 2 shows the observed age-specific fertility rates for the three natural fertility populations. As
expected, the Hutterites show consistently high fertility from age 20, with an average number of
children per woman in these cohorts of 10.76. The Hutterite data is also unique in terms of its pattern,
with a visible hump around ages 24-26, followed by a decline that is slow until age 35 and accelerates
afterwards. The French-Canadian cohorts have the second largest fertility in the three populations,
with an average of 7.7 children per woman, followed by the French cohorts with an average of 5.75
children per woman. The shape of the ASFR is more conventional in these last two populations,
characterized by a rounded top, which in the case of the French-Canadian cohorts is found around ages
28 and in the case of the French cohorts around age 32. This is not surprising considering the mean
ages at marriages for these cohorts which is 20.4 for the Hutterites, 21.1 for the French-Canadian, and
24.1 for the French cohorts.
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Fig. 2 | Age Specific Fertility Rates for Three Natural Fertility Populations.

3.5 Estimation
As previously mentioned, our primary goal is to demonstrate that the lack of individual-level data does
not have to be an impediment to understanding the behaviors and mechanisms underlying fertility
processes.

When only aggregate data is available, the probability of individual observations cannot be calculated,
and model parameters cannot be estimated using a maximum likelihood approach. Instead, we rely
on Approximate Bayesian Computation (ABC), a popular likelihood-free estimation approach for the
estimation of computational models.

The core idea behind ABC is to estimate posterior distribution without explicitly calculating the like-
lihood function. Instead, ABC algorithms simulate data from the model and accept parameter values
when the simulated data is sufficiently close to the observed data, based on a chosen distance metric.

We use the basic ABC rejection algorithm, which draws parameter samples from the prior distribution
and rejects those outside a predefined distance threshold (Tavaré et al., 1997; Pritchard et al., 1999).
While this method is straightforward to implement, it requires a large number of simulations to obtain
a small set of accepted samples.

To improve the efficiency of the approach, a Gaussian Process (GP) regression adjustment was used in
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a second step. Here, previously accepted parameter values were modeled as a function of the simulated
summary statistics to obtain a better approximation of the posterior distribution.

Algorithm: ABC + Regression Adjustment

Input: Prior distribution π, model M for simulation, observed data yobs, distance
threshold ϵ.

Output: Adjusted samples from the posterior distribution {θ̃1, θ̃2, . . . , θ̃N}.
begin

Draw parameter samples, θ∗, from π

Simulate data, y∗, from M(θ∗)

Compute distance between y∗ and yobs

Accept θ∗ if the distance is less than ϵ

With accepted parameters {θ̂1, θ̂2, . . . , θ̂N} and corresponding simulated data
{ŷ1, ŷ2, . . . , ŷN}:

begin
Fit a Gaussian Process regression model:

θ̂ = m(ŷ) + ε

Adjust the values of the accepted parameters:

θ̃i = m(yobs) + εi

= m(yobs) + (θ̂i −m(ŷi))

end
Return {θ̃1, θ̃2, . . . , θ̃N} as samples from the adjusted posterior distribution.

end

4 Results

4.1 Model Validation
We use cross-validation to ensure that the parameters in our model can be correctly identified from
a set of age-specific fertility rates. This procedure makes use of the set of parameter values θ∗ and
their corresponding simulated rates y∗. From this set we randomly select the ith simulation as our
validation set. The simulated rates in the validation set are taken as pseudo-observed values. Taking
into account all simulations except the validation set, the model parameters are then estimated using
the procedure described in the previous section. This process is repeated for a subset of 100 randomly
chosen simulations and the prediction error is computed as:
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εp =
∑
i

(
(θ∗i − θi)

2

Var(θi)

)

The results of the cross-validation exercise are shown in Figure 3. They show that the estimation pro-
cedure consistently returns parameter values θ that are very close to the true parameters that generated
the data θ∗. The parameter with the smallest prediction error is µm and the parameter with the largest
error is δ. This is not unexpected as a change in the value of µm produces a shift of the entire distri-
bution of rates that is very distinct from the effect of a value change in any other parameter. A change
in the value of δ, on the other hand, produces an effect on the rates that overlaps to a certain extent to
the effect of a change in the value of ϕ1 (see appendix A for some animations illustrating the effect of
each parameters on the schedule of age-specific fertility rates).

Fig. 3 | Results of Model Cross-Validation. The location of each of the red dots displayed in the
figure is defined by the mean of the estimated posterior distribution in the y axis and the value of
the parameter that generated the simulated results used as pseudo-observed data during the validation
process.
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4.2 Model Fit
Figure 4 depicts the model’s posterior predictive distribution against observed ASFR for the three
populations analyzed. The model accurately captures the general characteristics of the data, such as
the shape, location of peaks, and rate of decline of the three distributions. In fact, the fit is remarkable
in all three cases, except for the rates at the very end of the reproductive age window (ages 47 to 50),
which the model tends to underestimate.

Fig. 4 | Observed vs. Simulated Age-Specific Fertility Rates with 95% Credible Intervals.

Age

f(
x)

3 7 11 15 19 23 27 31 35 39 43 47 51 55

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Observed

Median of sim.

99% interval

(a) Hutterites

Age

f(
x)

3 7 11 15 19 23 27 31 35 39 43 47 51 55

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Observed

Median of sim.

99% interval

(b) XVIII Century Quebec

Age

f(
x)

3 7 11 15 19 23 27 31 35 39 43 47 51 55

0.
0

0.
1

0.
2

0.
3

0.
4

Observed

Median of sim.

99% interval

(c) XVII - XVIII Century France

10



A Appendix

Fig. 5 | Effect of ϕ1 on Simulated Age-Specific Fertility Rates

Fig. 6 | Effect of µm on Simulated Age-Specific Fertility Rates
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Fig. 7 | Effect of δ on Simulated Age-Specific Fertility Rates
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