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Abstract

A number of statistical models are available to estimate age-specific demographic rates in a wide
range of populations, partcularly in contexts where the data are sparse or unreliable. However, model
development and testing has largely focused on in-sample validation, with less emphasis on model vali-
dation on new data. Validation using classical train/test sample splitting approaches is not appropriate
in the context of estimating age-specific rates, as demographic outcomes across age are not independent
and identically distributed. In this paper, we show that data thinning, a collection of randomization
strategies used in the statistical learning literature, can be used to generate independent train and test
sets by partitioning the population of each individual age group into two (or more) subpopulations sub-
ject to the same latent risks. As all age groups are represented in both folds, model fitting and testing
replicate the intended use of the model, that is, whether the latent risk curve extracted from the observed
data generalizes to an independent realization from the same age groups. We illustrate the advantages
of data thinning over sample splitting in a simulation study based on US state-level mortality data.

1 Introduction

Obtaining reliable estimates of age-specific demographic rates is challenging in many populations, as the
available data to estimate such rates may be sparse, noisy, or unreliable. In these contexts, demographers
have developed a wide range of statistical models to estimate the underlying latent risk of a particular
demographic event by age. For example, recent research has used techniques such as principal components
(Dharamshi et al., 2023a), penalized splines (Camarda, 2019), TOPALS models (Dyrting, 2020), and other
parametric approaches (Schmertmann, 2003) in applications across outcomes such as mortality, fertility,
migration, and marriage age-specific rates.

While statistical models to estimate and project age-specific demographic outcomes are widely available,
there has been less focus on methods to validate the performance of such models. Many authors evaluate the
performance of their method compared to other extant methods by assessing in-sample measures of model fit
(see for example, Bohk-Ewald et al. (2018); Camarda (2019); Denecke et al. (2023)). However, there is a lack
of emphasis on out-of-sample model validation, particularly in the case of estimation (rather than projection).
Classical approaches from statistical learning focus on sample splitting; that is, randomly splitting the
available data into a training dataset, which is used to estimate model parameters, and a test dataset, which
is used to validate how well the model performs on new data. However, these approaches are not suitable
in many demographic contexts, particularly when producing estimates by age, year, geographic area (and
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potentially more subgroups), because only one observation of the outcome is available per combination of
population characteristics.

To understand the problem, note that we are interested in estimating a collection of parameters θi for
i = 1, . . . , n, where θi represents some demographic rate in the ith population. We could consider using
some of the populations as a training set and holding the rest out as a test set. But there is problem: by
doing this, we ensure that some of the θi’s are not present in the training set at all, i.e. we cannot possibly
estimate all of them well, without unreasonably strong assumptions about smoothness of the θi’s across
groups. Furthermore, sample splitting departs from the validation question of interest: sample splitting tells
us how a model would perform on populations not seen in the original study, whereas our interest is in the
performance of the model on an independent realization of the populations observed in the original study.

The problem of validating a model in settings where sample splitting cannot be applied is not unique
to demography; it also arises in problems such as clustering (Gao et al., 2022; Chen and Witten, 2022).
This has led to a recent line of work on randomization as a strategy to split a single observation into two
independent components. In a seminal paper, Rasines and Young (2022) demonstrate that for Gaussian
data, by injecting independent external Gaussian noise, one can decompose a single observation into two
independent observations that sum to recover the original. Models can then be fit on one set of observations
and validated on the other. This can be performed even in settings where sample splitting is not applicable.
Neufeld et al. (2023) and Dharamshi et al. (2023b) show that similar randomization strategies are available
for a wide class of distributions. Notably, their “data thinning” proposal includes the count-valued binomial
and Poisson distributions.

In this paper, we will show that the binomial and Poisson data thinning strategies proposed by Neufeld
et al. (2023) and Dharamshi et al. (2023b) are particularly useful in the context of estimating age-specific
demographic rates. By decomposing demographic count data into two or more independent data sets, data
thinning unlocks a principled cross-validation algorithm for validating demographic estimation methods.
In this setting, these tools have elegant interpretations rooted in sampling theory. Specifically, one can
understand data thinning as a statistical way of turning an enumeration over a population into multiple
independent enumerations over smaller populations subject to the same risks. In the context of model vali-
dation, each distinct enumeration can then be used for either model fitting or validation. This is in contrast
to sample splitting, where we are forced to reserve some age groups for validation, which is inconsistent with
the goals of our model: we are interested in constructing models that can recover age-specific rates from an
enumeration, not from a censored dataset.

The rest of this abstract is organized as follows. In Section 2, we formally define binomial and Poisson
data thinning, and interpret the associated algorithms in the context of estimating demographic rates. In
Section 3, we illustrate the advantage of data thinning over classical sample splitting in a simulation study
based on US state-level mortality data. We conclude with a brief discussion in Section 4.

2 Data thinning

Data thinning is a strategy for decomposing an individual random variable X into two or more independent
random variables X(1), . . . , X(K) that can together reconstruct the original (Neufeld et al., 2023; Dharamshi
et al., 2023b). A formal definition of data thinning is given in Definition 1.

Definition 1 (Data thinning). Suppose that X ∼ Pθ where P is a distribution parameterised by an unknown
parameter θ. Consider the distribution Gx defined as the conditional distribution (X(1), . . . , X(K))|X = x.
Suppose that Gx does not depend on θ and that upon sampling (X(1), . . . , X(K)) from Gx, the following hold:

1. X(1), . . . , X(K) are mutually independent,

2. For k = 1, . . . ,K, X(k) ∼ Q
(k)
θ where Q(k) is some distribution parameterised by θ, and

3. X can be reconstructed from X(1), . . . , X(K) by some deterministic function T (ie. T (X(1), . . . , X(K)) =
X).
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Then, we say that P has been thinned by T .

Intuitively, data thinning starts with one data point, and breaks it into K pieces. The new data points
divide the information about the unknown parameter θ contained in the original. Because the K new data
points are independent, we are free to perform one task using the first new data point, another using the
second, and so on, without recycling information across tasks.

Extending to a data vector of length n, suppose that for i = 1, . . . , n, Xi ∼ Pθi are independent, but not
necessarily identically distributed data points. If we apply K-fold data thinning entry-by-entry to the entire

data vector, we will produce K independent data vectors of length n where in the kth vector, X
(k)
i ∼ Q

(k)
θi

.
Once again, we are free to perform one task on the first vector, a second task on the second vector, and so on.
If we choose K = 2, we can fit a model to the first vector and perform validation on the second. Because all
of θ1, . . . , θn are represented in each data vector, we can draw conclusions about model performance at the
individual parameter level. This stands in stark contrast to classical model validation via sample splitting,
which fails in this setting, because (i) it requires that X1, . . . , Xn are both independent and identically
distributed (Cox, 1975); and (ii) even if we ignore the violation of the previous assumption, the training and
test set would each contain only a subset of the parameters θ1, . . . , θn, and so it would not be possible to fit
and validate a model involving all of the parameters of interest.

The case of independent, but non-identically distributed data is common in demographic estimation.
Frequently, we observe counts of some demographic quantity across a variety of ages, periods, and locations.
These counts are often treated as independent conditioned on the unobserved risk of the corresponding
population. As the risks vary across populations, the counts follow different distributions. While there
are many proposed methods for estimating latent risks given observed demographic counts, there are few
proposals on how to validate these models that acknowledge that the data are non-identically distributed.

The rest of this section will focus on specific data thinning algorithms for common count-valued distribu-
tions that can be used to perform this validation task. We will use mortality as a running example, though
other target quantities could be used instead. Notationally, we will say that Di are the deaths corresponding
to population Pi in the age-period-location indexed by i. This population is subject to the unknown risk θi,
our target of estimation.

2.1 Binomial distribution

Suppose that we choose to model deaths with a binomial random variable Di|θi ∼ Bin(Pi, θi). If the
population size Pi is known, but the probability of death θi is not, then Algorithm 1 can be used to thin Di.

Algorithm 1 (Binomial thinning). Suppose that Di|θi ∼ Bin(Pi, θi) where Pi is known and we wish to thin
Di into K folds. Perform the following:

1. Choose a vector (ϵ1, . . . , ϵK) on the unit K-simplex such that for all k ∈ 1, . . . ,K, ϵkPi is an integer.

2. Sample (D
(1)
i , . . . , D

(K)
i )|Di = d ∼ MultivariateHypergeometric(ϵ1Pi, . . . , ϵKPi, d).

Then, D
(1)
i , . . . , D

(K)
i will be mutually independent, D

(k)
i |θi ∼ Bin(ϵkPi, θ), and

∑K
k=1 D

(k)
i = Di. Fur-

thermore, the proportion of Fisher information about θi contained in D
(k)
i is ϵk.

Algorithm 1 starts with one binomial observation and produces K independent binomial observations,
each of which represents a fraction of the original population. The intuition behind Algorithm 1 lies in
step 2. The multivariate hypergeometric distribution describes the process of sampling without replacement.
Applied to the scenario with binomial distributed deaths Di in a population Pi, this distribution first divides
the total population into K subpopulations of size ϵkPi for k = 1, . . . ,K. Then, one-by-one, each of the Di

deaths are allocated to one of the K subpopulations with probability proportional to the population in each
category less the number of deaths previously allocated.

It is important to note that in Algorithm 1, the risk of death in each new artificial subpopulation is
θi. That is, the algorithm simply partitions the original population carefully such that the risk of death
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is preserved (where we emphasize that the risk of death, θi, is unknown). It is as if before the original
enumeration over the population, the data collection agency randomly assigned each person to one of the

K groups. This means that any model that would have been fit to Di can instead be fit to D
(k)
i . Similarly,

any estimate of θi produced on one D
(k)
i can be validated on another, as these quantities are independent.

2.2 Poisson distribution

A similar data thinning strategy for the Poisson distribution can be applied when modelling deaths as
Di|θi ∼ Poisson(Piθi). We describe Poisson data thinning in Algorithm 2.

Algorithm 2 (Poisson thinning). Suppose that Di|θi ∼ Poisson(Piθi), and we wish to thin Di into K folds.
Perform the following:

1. Choose a vector (ϵ1, . . . , ϵK) on the unit K-simplex.

2. Sample (D
(1)
i , . . . , D

(K)
i )|Di = d ∼ Multinomial(d; ϵ1, . . . , ϵK).

Then, D
(1)
i , . . . , D

(K)
i will be mutually independent, D

(k)
i |θi ∼ Poisson(ϵkPiθi), and

∑K
k=1 D

(k)
i = X.

Furthermore, the proportion of Fisher information about θi contained in D
(k)
i is ϵk.

Similar to Algorithm 1, Algorithm 2 takes one Poisson observation Di and produces K independent

Poisson observations, D
(1)
i , . . . , D

(K)
i , that each represent the deaths in a population of ϵkPi individuals

with risk θi. Once again, the intuition behind Algorithm 2 comes from sampling theory. The multinomial
distribution randomly allocates each death to one of the subpopulations with probability proportional to the
total subpopulation size, given by ϵkPi. As this process preserves the risk in the artificial subpopulations,
and as the observed number of deaths in the subpopulations are independent, we can again fit a model to

one D
(k)
i and validate it on another.

3 Simulation Study

To illustrate the application of data thinning to model validation, we conducted a simulation study based on
US state-level mortality data. Our goal is to demonstrate that due to the lack of uniformity in age-specific
mortality rates, sample splitting leads to poor estimates on the training set, specifically in the age groups that
were held out. This, in turn, leads to unreliable model validation. By contrast, if we apply data thinning,
then both the training and test sets include information for all age groups.

We will use a principal component-based modelling framework for our simulations. This modelling
approach constructs latent mortality risks on the log-scale as a linear combination of principal components
generated from set of standard log-mortality curves. The principal components capture standard patterns in
mortality, and the model seeks to determine how best to aggregate these patterns to fit new data. The use
of such models in mortality estimation is discussed in Alexander et al. (2017) and Dharamshi et al. (2023a).

We used data from the United States Mortality Database (USMDB) to construct an N × A matrix, X,
of state-level mortality curves spanning 60 years (United States Mortality Database, 2023). Here, N = 3057
is the number of state-years, and A = 19 is the number of age groups (<1, 1-4, 5-9, . . ., 80-84, 85+). We
then took the singular value decomposition, X = UΣV ⊤, and extracted the first four principal components,
V1, . . . , V4, from the columns of V . The first principal component captures the characteristic “J”-shape
of a log-mortality curve, the second contains an “accident hump”, and the third and fourth contain other
localized mortality patterns.

To generate simulated data, we took the first four left singular values for New Hampshire in 2016 and
constructed a log-mortality curve by rescaling them by the first four singular values and then multiplying
by the first four principal components. This gives us a vector of length A = 19, comprised of elements
θ1, . . . , θ19, which will serve as our “true” log-mortality rates in this simulation. We simulated deaths for
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Age SampleSplit DataThin Full Age SampleSplit DataThin Full

<1 0.2650 0.1883 0.1617 45-49 0.0866 0.083 0.0714
1-4 0.4012 0.3296 0.2822 50-54 0.0757 0.0716 0.0616
5-9 0.2174 0.1999 0.1742 55-59 0.0554 0.053 0.0455
10-14 0.2709 0.2519 0.2187 60-64 0.0421 0.04 0.0341
15-19 0.2704 0.2522 0.2185 65-69 0.0369 0.0345 0.0297
20-24 0.191 0.1798 0.1551 70-74 0.0365 0.0339 0.0294
25-29 0.1504 0.1447 0.1242 75-79 0.0334 0.0312 0.0273
30-34 0.1282 0.1255 0.1077 80-84 0.0284 0.0253 0.0223
35-39 0.1127 0.1104 0.0948 85+ 0.0212 0.0178 0.0152
40-44 0.0979 0.0952 0.0818

Table 1: Root mean squared errors for estimated log-mortality rates when using sample split training sets,
data thinning training sets, and the full dataset. Data thinning produces more reliable log-mortality rates
than sample splitting with the same proportion of information.

each age group Da, where a refers to the age group, using a Poisson likelihood with a population offset of
10,000.

For each dataset, we will sample split by taking 14 of the 19 observed deaths as a training set and leaving
the remaining 5 as a test set. We will also data thin by applying Algorithm 2 to each age group’s observed

deaths with K = 2 and (ϵ1, ϵ2) = (14/19, 5/19), and use D
(1)
a as the training set and D

(2)
a as the test set. We

will then estimate the mortality rate from the training sets using a Poisson generalized linear model with
the first four principal components (computed on the entirety of the USMDB data) as the covariates. That
is, we fit the following model:

Da|θa ∼ Poisson(10, 000θa), (1)

log θa = V1aβ1 + V2aβ2 + V3aβ3 + V4aβ4. (2)

Note that this model exactly matches the data generating process. Our goal is to see whether sample splitting
or data thinning better recover θa from their respective training sets. Performance will be evaluated by
comparing the estimates θ̂a against the truth θa and computing root mean squared error (RMSE) across
simulations. Nominally, the amount of information in both training sets is the same, but we expect that
estimates of θa will be better when using the data thinning training set as all age groups are represented,
thereby accounting for the non-identical mortality rates.

Table 1 presents the results of this experiment. We have also included the RMSE when fitting the model
using the full dataset as a baseline. We can see that as expected, for all age groups, errors are greatest for
sample splitting, lower for data thinning, and lowest for the full dataset. The difference between sample
splitting and data thinning is particularly acute in the young ages. Intuitively, this is because young age
mortality varies in a non-linear fashion, and can vary widely across different populations. As such, in the
event sample splitting excludes a young age from the training set, estimates of the excluded age group will
be unreliable.

Figure 1 provides an example of this phenomenon. In the plots, the black line represents the true log-
mortality rates, the black points are the observed training and test set log-mortality rates (with zero death
observations encoded as −12), and the coloured lines and intervals are the estimated log-mortality rates and
95% uncertainty intervals. In Facet 1a, when sample splitting is given a training set that excludes young
adults, it greatly underestimates young adult mortality as no information on the magnitude of the accident
hump is seen by the model. By contrast, in Facet 1b, the data thinning training set consists of noisy versions
of the observed data for all age groups. Thus, while each data point has less information than the original,
some information on the degree of the accident hump is seen by the model, leading to better estimates.

As mentioned in the introduction, sample splitting emulates a process in which we are given a realization
of new age groups not seen in the original data; as we can see from our results in Table 1, this is a very
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(b) Data Thinning

Figure 1: Comparison of sample splitting and data thinning. The black lines are the true log-mortality
curves, the black dots are the training and test observations under each method, and the blue and green
curves/regions are the estimated log-mortality curves and uncertainty intervals using the training data under
sample splitting and data thinning respectively. With sample splitting, when key ages are allocated to the
test set, estimates in the training set are poor as no information on local features of the mortality curve are
used in training. In data thinning, some information on all parts of the mortality curve are used in both
training and testing.

challenging setting! But it is not the setting of interest when estimating age-specific rates. By contrast, data
thinning emulates a process in which we are given an entirely new population composed of the same set of
age groups; we see from Table 1 that this setting is much easier; furthermore, this is our sampling frame of
interest. Most importantly, Table 1 highlights the fact that we cannot use the age group sampling frame
inherent to sample splitting to approximate the population sampling frame inherent to data thinning, as the
former leads to estimates that are much less accurate than the latter.

4 Discussion & Next Steps

In this paper, we show that data thinning, a recent proposal in the statistical learning literature, can be
used to validate model-based estimates of age-specific demographic rates. Unlike classical sample splitting,
data thinning splits the information in each observed count, as opposed to discretely allocating individual
data points to either the training set or the test set. This leads to a principled strategy for validating the
ability of a model to recover important age-specific patterns. Furthermore, it allows for demographers to
draw conclusions about the performance of a model across all ages, instead of just on the ages held out in
the validation set. This is noteworthy as for most quantities, model performance likely varies by age. For
example, young-age mortality often exhibits both small death counts and highly non-linear patterns, which
make it difficult to estimate.

In the full paper, we will expand both the methodological discussion and the applications. For the former,
we will discuss data thinning for more complex models than simple GLMs, as well as the consequences of
model misspecification. For the latter, we will expand the simulation study to include more data types, and
will add a comprehensive real data case study to showcase how data thinning should be applied by practicing
demographers.
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