
A Two-Step Bayesian Hierarchical Modelling Approach for Estimating 

Population Density when Settlement Data are Partially Observed 
Chibuzor Chris Nnanatu1,4*, Amy Bonnie1, Josiah Joseph2, Ortis Yankey1, Duygu Cihan1, Assane Gadiaga1, 

Mercedita Tia3, Marielle Sander3, Attila Lazar1, Andrew Tatem1 

1WorldPop, School of Geography and Environmental Science, University of Southampton, SO17 1BJ, UK 

2National Statistical Office, Papua New Guinea 

3United Nations Population Fund, Papua New Guinea 

4Nnamdi Azikiwe University, Nigeria 

Corresponding Author’s email: cc.nnanatu@soton.ac.uk 

Background 

The growing demand for reliable population estimates at small area units to address several developmental and 

humanitarian needs necessitates the development of more robust statistical solutions. Model-based population 

estimation methods (PEMs) such as the bottom-up or top-down geospatial population modelling methods (Stevens 

et al, 2015; Leasure et al., 2020) provide estimates of population at finer spatial resolutions than census 

projections, using multiple geospatial data sources and advanced statistical modelling techniques (UNFPA, 2020). 

These often serve to provide more rapid and up-to-date population estimates using recent datasets (UNFPA, 2020), 

thereby taking any recent changes in population dynamics into account. Specifically, the bottom-up model 

leverages advances in satellite-imagery and improved computing efficiency to integrate recent satellite-dependent 

settlement datasets and other key geospatial covariates with sample population data (e.g., surveys) to predict 

estimates of population numbers across entire countries at small area scales (usually 100m by 100m grid cells) 

including in unsampled or partially observed locations (Leasure et al., 2020). However, satellite-based datasets 

are often only partially observed due to factors such as tree canopy and cloud covers meaning that the settlement 

data can be systematically biased (Moazami et al., 2022; Yang et al., 2022). When these biases are not identified 

and corrected for, they can be propagated into parameter estimation, potentially leading to biased population 

estimates and inaccurate predictions.  

This study was motivated by the lack of census enumeration in Papua New Guinea since 2011, and the need to 

estimate the population numbers, demographics and distributions at small area scales. This was undertaken by 

integrating nationally representative datasets from Malaria survey and Urban Listing data with satellite-observed 

settlement data and other geospatial covariates. One key potential modelling challenge here is that many of the 

rural populations in PNG are under tree canopy cover, and as a result, the available satellite-based settlement data 

only partially observed the full set of rural structures, thus, there was need to develop an approach that ensures 

minimum biases in the population estimates. This paper presents a novel two-step approach based on robust 

Bayesian hierarchical geostatistical modelling framework which adjusts for the potential biases in the partially 

observed satellite-based settlement data in the first step, and then uses the bias-adjusted data to calculate estimates 

of population numbers in the second step. 

 

Figure 1. Map of Papua New Guinea showing the Census Units across the country where recent datasets from the Malaria 
LLIN and UL are available as well as where they overlap.  
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Results from a simulation study carried out under various survey coverage versus satellite observation coverage 

scenarios show that our methodology caused between ~63% and ~88% reduction in relative bias. When applied 

to estimate population numbers at subnational scales in PNG, the two-step model solution reduced relative bias 

by ~33% leading to more precise estimates and accurate predictions. Our methodology provides an important 

model-based bias correction framework within the Bayesian hierarchical population modelling contexts which 

could be easily adapted in other settings. 

Data and Methods 

This study is motivated by Malaria Long Lasting Insecticidal Net (LLIN) Survey of 2019 to 2021, and 2021 Urban 

Listing (UL) datasets which are both nationally representative at census units level in Papua New Guinea (Figure 

1). The datasets contain information on the household counts which would serve as input population data for 

our models. Altogether, data were available for 16,903 census units (CU) out of the 32,100 CUs that are spread 

across the country.   

A schematic representation of the 2-step method modelling workflow is provided in Figure 2. In step 2, potential 
biases in satellite-observed building intensity (a proxy for settlement intensity) was corrected for using a robust 
Bayesian hierarchical regression modelling framework. In the second step, the bias-corrected building intensity 
was integrated with key geospatial covariates and the observed population datasets to calculate estimates of 
population numbers at census unit levels. The satellite data and the geospatial covariates raster files were 
sourced from Planet (www.planet.org) and WorldPop (www.worldpop.org), respectively. The settlement data 
from Planet which came in gridded format at ~4.77m spatial resolution is an AI/machine-learning derived 
classification of satellite imagery where buildings/settlement structures have been detected. As a result, human 
settlement structures that are under tree canopy or cloud covers will be missed, thereby, posing a data challenge.  

 

Figure 2. Two-Step Hierarchical Regression Modelling workflow 

As shown in Figure 2, the partially observed settlement data (building intensity) is the outcome variable in step 
1 allowing us to predict estimates of building intensity at locations covered by tree canopies and cloud.  By 
assuming that observations within neighbouring locations share common characteristics and are more similar 
than those further apart at both steps one and two, our methodology accounted for spatial autocorrelation 
within the data which allowed us to borrow strengths from contiguous locations with more observations to 
predict observations in areas with little or no observations (Leasure et al., 2020). We used R statistical 
programming language as the implementation software while model parameter inference was based on Bayesian 
statistical inference via the integrated nested Laplace approximations in conjunction with the stochastic partial 
differential equations (INLA-SPDE; Rue et al., 2009). The INLA-SPDE approach is faster and more accurate when 
compared with sampling-based methods such as the Markov Chain Monte Carlo (MCMC) techniques which are 
known to be computationally expensive for multi-dimensional datasets and model results are not usually 
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repeatable. In addition, the use of Bayesian inference approach meant that prior knowledge on the parameter 
values can be incorporated and that uncertainties in parameters estimations are readily quantifiable. These 
estimates of uncertainties play a vital role in the design and implementation of national policies targeted at small 
area units (UNFPA, 2020).  

Simulation Study 

We carried out an extensive simulation study to explore the performance of our proposed methodology under 
different scenarios. Specifically, we considered different percentage survey coverage (𝑝%) versus percentage 
satellite observation coverage (𝑏%) permutations with 𝑝 and  𝑏 taking values from {0.2, 0.4, 0.6, 0.8, 1.0} and 
{0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00}, respectively. For example, one of the combinations is when 
population data for the 60% of the population is available (𝑝 = 0.6) versus satellite data coverage of only 85% of 
the population (𝑏 = 0.85). Thus, in all, 40 different datasets of these permutations were simulated and tested. 
Note that 𝑝 = 1.0 implies 100% observation of every individual within the population, that is, census. Similarly, 
when 𝑏 = 1.00, it means that the satellite-based settlement data was fully (100%) observed and assumed bias 
free, thus, may not require any bias correction. For each dataset, we first fitted normal Bayesian hierarchical 
model (BHM) without first correcting for the potential biases in the settlement data. Next, we first corrected the 
settlement data biases via the two-step Bayesian hierarchical modelling (TSBHM) approach using the same 
datasets and evaluated model performances using a suit of statistical modelling fit indices. In particular, we 
tested and compared the model performances and predictive abilities using the Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), Absolute Bias (AB), Pearson’s Correlation (PC), and Relative Error Rate (RER).   
Apart from the PC in which higher values indicate better fit, smaller values based on the other fit metrics indicate 
a better fit model.  

Findings 

Simulation study results indicate that the model which first adjusted for the potential biases in the settlement 
data provided a better fit than the model which ignored these biases. Specifically, Figure 3 shows that the 
TSBHM consistently provided lower MAE, RMSE, AB, and Normalized RER than the BHM models. In addition, 
the TSBHM more accurately predicted estimates of population than the BHM as can be shown with higher PC 
values for TSBHM than for BHM.  

 

Figure 3. Comparisons in model fit indices of TSBHM and BHM. 

Furthermore, Figure 4 shows the variations in percentage reductions in relative biases when the TSBHM is 
implemented. Percentage reduction in relative biases increased as the proportion of partially observed data 
increased but varied between 63% and 88% thus indicating that our methodology is very robust and works well 
as expected. 



 

Figure 4. Percentage Reduction in Relative Bias when TSBHM is used. Note that 95%_vs_20% in the x-axis ticks label 
represents dataset obtained from 95% satellite coverage when only 20% of the observations was observed. Percentage 
reduction in relative bias increased as the proportion of partially observed satellite-based settlement data increased.  

When applied to the PNG datasets, the two-step modelling approach (TSBHM) consistently 

outperformed the conventional BHM method (Table 1) and reduced biases by approximately 33%.  

Table 1 Model fit metrics comparison between BHM and TSBHM. 

Model MAE RMSE AB 

BHM 3.19 5.73 3.14 

TSBHM 2.25 4.21 2.10 

These findings reiterate the importance of accounting for potential biases while using satellite-based 

observations to ensure improved parameter estimates and more accurate predictions. Future 

research would explore the applications of our methodology in other contexts.  
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