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Short Abstract

Accurate subnational fertility estimates are crucial for shaping policy decisions across diverse sectors, including
education, health care, and social welfare. One of the major challenges in producing these estimates is the
presence of small populations, in which information about birth counts stratified by the age of the parent at
the birth of the child may be lacking or inadequate. In this research paper, we describe a Bayesian model
tailored to estimate the period Total Fertility Rates (TFR) for both men and women at a subnational level.
Building on previous work by Schmertmann and Hauer (2019), the model utilizes population counts from age-
sex pyramids and models age-specific mortality and fertility patterns allowing for uncertainty. We present a real
data application focusing on fertility estimation in US counties for the historical period 1982−2019. Preliminary
results reveal distinctive fertility trajectories for men and women across different US counties. Furthermore, the
proposed model exhibits significant potential for the examination of male and female fertility behaviors across
diverse regions and time frames in multiple countries.
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Extended Abstract

1 Introduction

Precise subnational fertility estimates represent an essential tool for analyzing shifts in fertility patterns within
a country. Small-area fertility estimates help researchers in the to identify compositional and contextual factors
influencing fertility behaviors at a local level.
In this research paper we emphasize the importance of examining not only women’s fertility at a subnational
level but also that of men. While women’s fertility has been well-documented globally, men’s fertility tend to be
neglected due to a significant lack of high quality information (Coleman (1995)). This bias mirrors the focus on
women’s fertility in data collection efforts. Collecting data on women’s fertility behavior is comparatively easier
due to a more precise definition of the childbearing age interval and superior information quality in surveys
(Greene and Biddlecom (2000)). Nonetheless, confining fertility studies exclusively to women lead researchers
to neglect the distinctive aspects associated with men’s fertility behaviors (Schoumaker (2019)). Previous
studies (Dudel and Klüsener (2016);Ratcliffe et al. (2000);Tragaki and Bagavos (2014)) have revealed significant
differences in male and female fertility age patterns. Men have been found to have a broader reproductive age
span, displaying age-specific fertility rates that are lower at younger ages and higher at older ages (Schoumaker
(2017)). Furthermore, the literature reports substantial heterogeneity in the disparities between male and female
TFRs. In low fertility settings, female fertility has been found to be slightly higher than that of men (Dudel
and Klüsener (2016)). Conversely, in high fertility societies research has demonstrated notably higher fertility
rates among men than among women (Tragaki and Bagavos (2014)). While variations in male and female total
and age-specific fertility rates have been extensively examined at a national level (see Schoumaker (2019)),
less attention has been devoted to the evaluation of male and female fertility at a subnational level. Previous
research works by Schoumaker (2019) and by Dudel and Klüsener (2016) proposed a methodological framework
to calculate indicators of male age-specific and total fertility rates at a national level exploiting survey data.
This research paper aims to propose a model for estimating the period Total Fertility Rates (TFR) across
multiple geographical areas characterized by disparate age-sex population structures. Specifically, our modelling
approach builds upon the framework proposed by Schmertmann and Hauer (2019). This model enables to
estimate period TFRs using minimal input data, namely the number of children aged 0 − 4 and the number
of women in the reproductive age interval 15 − 49, and does not require the knowledge of the number of
births disaggragated by maternal age classes. Whereas the model by Schmertmann and Hauer (2019) focuses
solely on the estimation of female Total Fertility Rates, our objective is to expand this modelling framework
to the estimation of both male and female fertility at a subnational level. To the best of our knowledge, this
research paper represents the first attempt to develop a model for estimating male Total Fertility Rates at a
subnational level. Our model relies on a Bayesian hierarchical structure which enables to incorporate prior
information about standard mortality schedules and common age-specific fertility patterns. In addition, it
allows to build uncertainty intervals around TFR estimates. For this reason, our modelling approach helps to
inform fertility patterns in smaller geographical areas, in which the uncertainty around the data is higher. A
Bayesian hierarchical approach has been implemented by Ševč́ıková et al. (2018) for predicting female TFRs
across multiple subnational regions. The former model builds upon the Bayesian method developed by the
United Nations to predict national TFRs (see Alkema et al. (2011)) and is informed by standard fertility
transition theory. Our modelling approach estimates subnational TFRs for both men and women using limited
input data coupled with demographic knowledge about common mortality schedules and age-specific fertility
patterns.
The forthcoming sections of this research paper will be structured around three main sections, namely Method
section, Data Application section, and Concluding Remarks and Future Developments section. The Method
section will provide a detailed description of our proposed model. The Data Application section will illustrate
an empirical application of the proposed Bayesian model using population counts from US counties. The
Preliminary Results and Future Developments section will offer some preliminary insights, along with directions
for future developments.
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2 Method

2.1 Model Setup

Let Ca,t be the observed number of children in area a at time t. We assume that it can be modelled as a Poisson
distribution:

Ca,t|K
s

x,a,t ∼ Pois

( ωs∑
x=15

K
s

x,a,tE
s

x,a,t

)
(1)

where Ks
x,a,t is the expected number of children per individual of sex s in the age group x in area a at time t,

Es
x,a,t indicates the observed number of individuals of sex s in the age group x in area a at time t, ωs is the last

reproductive age group for individuals of sex s. The latter is assumed to be 45− 49 for women and 55− 59 for
men. In addition, throughout this paper, we will considered demographic quantities calculated for five-year age
groups.
By harnessing standard approximations from cohort-component projection methods (see Keyfitz et al. (2005)
for the mathematical details), we can define Ks

x,a,t as follows.

K
s

x,a,t =

[
L
s

x−5,a,t

L
s

x,a,t

· F
s

x−5,a,t + F
s

x,a,t

]
·
L0,a,t

2
(2)

where Ls
x,a,t denotes the expected person-years lived by individuals of sex s in age group x in area a at time t.

L0,a,t denotes the person-years lived by individuals in the age group 0 − 4 in area a at time t. F s
x,a,t denotes

the expected fertility experienced by individuals of sex s in the age interval [x, x + 5) in area a at time t. We
set F s

x,a,t to be zero outside the interval [15, 60) for men and outside the interval [15, 50) for women.
Following Hauer and Schmertmann (2020), we can rearrange equation 2, which can be rewritten as

K
s

x,t,c = TFR
s

a,t ·
L0,a,t

5
· 1
2

[
L
s

x−5,a,t

L
s

x,a,t

· ϕ
s

x−5,a,t + ϕs
x,a,t

]

= TFR
s

a,t ·
L0,a,t

5
· p

s

x,a,t

(3)

where ϕ
s

x,a,t =
5·F

s

x,a,t

TFR
s

a,t

is the fraction of life time fertility occurring to individuals of sex s in the age group x

if they are subject to the age-specific fertility rates observed in area a at time t throughout their reproductive
ages.

L0,a,t

5 denotes the expected fraction of still alive among children aged 0 − 4 in area a at time t. TFRs
a,t

is the period Total Fertility Rates experienced by either men or women in area a at time t. This demographic
measure can be interpreted as the expected number of children per man (woman) in area a at time t if he (she)

is subject to the current period age-specific fertility rates throughout his (her) reproductive ages. p
s

x,a,t can
be defined as an average of the life-time fertility experienced by either men or women in the age groups x and
x− 5. Note that we are assuming that fertility does not begin until age 15; hence, we set ϕs

10,a,t = 0.
Equation 3 decomposes the expected number children per man (woman) in age group x in area a at time t as

a product of three multiplicative factors. The first two factors, i.e., TFRs
a,t and

L0,a,t

5 , remain constant across

the reproductive age groups, while the third factor p
s

x,a,t varies with age.
Our proposed Bayesian model 3 incorporates demographic knowledge and uncertainty about demographic quan-
tities by placing models and priors on mortality and fertility parameters in equation 2.

2.2 Model for Age-specific Fertility

To incorporate prior knowledge about age fertility schedules, we model the share of life time fertility in a age
group x on the log scale as

γ
s

a,t = m
s
+ y

s

1β
s

1,a,t + y
s

2β
s

2,a,t
(4)

where γs
x,a,t = log

(
ϕ
s

x,a,t

ϕ
s

15,a,t

)
is an index defined as the log transformation of the ratio of the share of life time

fertility in age group x to the share of life time fertility in age group 15. γ
s

a,t is vector whose elements are

γ
s

x,a,t at the distinct reproductive age groups. The size of such vector is 9 for men and 7 for women. The

transformation of ϕ
s

x,a,t ensures that the elements of the vector γ
s

a,t on the right hand-side of equation 4 can
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assume both positive and negative values.

m
s
, y

s

1 and y
s

2 are components derived from a set of standard age-specific fertility curves. In particular, m
s
is

a vector containing the age-specific means of the log-transformed fertility schedules (γ
s

x,a,t), while y
s

1 and y
s

2 are
the first and second left-singular vectors which are obtained via a Singular Value Decomposition on the matrix
Y

s
whose columns are log-transformed male (female) age-specific fertility schedules.

For example, in our application to US counties we employ the US national age-specific female fertility curves for
the historical period 1933− 2021 retrieved from the Human Fertility Database (Jasilioniene et al. (2015)). US
age-specific male fertility schedules are derived from the Human Fertility Collection (Grigorieva et al. (2015))
and cover the historical period 1969− 2015.
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Figure 1: The figure provides an example of the Principal Component Analysis applied to logged U.S. age- and
sex-specific fertility proportions (γs

x,a,t). The first plot illustrates the average logged fertility rates proportions
across the distinct reproductive age classes by sex. The second and third plots display the values of the first
(y

s

1) and second (y
s

2) left-singular vectors of the matrix (Y
s
) separately for men and women.

The meanms describes the overall age-specific fertility curve. As expected, both men’s and women’s age-specific
fertility patterns increase up to the age 30− 34 and then start to taper off. The decrease is substantially faster
for women compared to men due the narrower female reproductive age span. For both men and women, the first
principal component seems to allow for the postponement of the mean age at childbearing as its components
are strictly increasing for both men and women starting from the age class 25 − 29. On the other hand, the
second principal component enables higher fertility levels in the reproductive age classes 30− 34 for women and
35− 39 for men.
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β
s

1,a,t and β
s

2,a,t are defined as shape parameters drawn independently from a standard normal distribution for
each combination of area a, sex s and time t.

β
s

1,a,t, β
s

2,a,t ∼ N (0, 1) (5)

Setting the distribution of such parameters to a standard normal ensures that their support is restricted to the
interval [−2, 2] in order to better mimic the national age-specific fertility curves.
Overall, we believe the inclusion of the first two principal components is sufficient to capture the most common
age-specific fertility schedules. Indeed, by simulating multiple trajectories for the age-specific proportions of
life-time fertility (see figure 2), we are able to capture a wide variety of age-specific fertility patterns. In order

to obtain the trajectories in figure 2, we generated values for the coefficients β
s

1,a,t and β
s

2,a,t from the standard

normal distribution and employed the simulated values of the parameters to obtain numerical values for γ
s

x,a,t.

The simulated numerical values for ϕ
s

x,a,t can be obtained by applying the following transformation

ϕ
s

x,a,t =
exp (γ

s

x,a,t)

ωs∑
x=15

exp (γ
s

x,a,t)

(6)

Female Male

15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55

0.
0

0.
1

0.
2

0.
3

0.
4

Age

φ x,
 a

, t
s

Figure 2: The figure illustrates 50 possible patterns for the age-specific fertility proportions (ϕ
s

x,a,t) for both
women and men.

Priors on Total Fertility Rates

The Total fertility rate TFR
s

t,a from equation 3 is modelled through a normal distribution, whose mean is

assumed to be equal to the national Total Fertility Rate observed at time t (TFR
nat,s

t ) for either men or
women.

TFR
s

t,a ∼ N (TFR
nat,s

t , σ
2

TFRs
t,a
) (7)

The standard deviation parameter σ
TFR

s

t,a

is assigned a non-informative prior. In practice, we assign to such

parameter a normal distribution with mean equal to 0 and variance equal to 2.
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σTFRs
t,a

∼ N (0, 2)

The practical implication of centering the prior distribution of TFR
s

t,a to the national value TFR
nat,s

t is to
shrink counties with a small population towards the national average. In this manner, fertility levels in small
counties are partially informed by the national fertility level. On the contrary, fertility levels in larger counties
are primarily determined by their population counts.

2.3 Priors on Mortality Parameters

Schmertmann and Hauer (2019) modelled child and adult mortality with the log-quadratic mortality model by
Wilmoth et al. (2012). Without delving into technical details, they established prior distributions for the two
parameters of the log-quadratic model by Wilmoth et al. (2012) and recovered the age-specific Person-Years
using standard life table relationships.
Our proposed model incorporates information about child and adult mortality by placing a prior probability
distribution directly on the Person-Years parameters (L0,a,t and L

s

x,a,t) of equation 3. Specifically, we can take
advantage of the availability of US subnational life table estimates. In our data example, we used county-specific
life tables for the historical period 1982−2019 from the US Mortality Database (visit website usa.mortality.org for
downloading the data and see Alexander et al. (2017) for the methodological details). However, we acknowledge
that the direct modelling of the Person-Years is feasible provided that subnational mortality life tables are
available for the country of interest. In case we lack detailed subregional mortality data, we can resort to other
mortality models such as the log-quadratic model that only requires the knowledge of child mortality.
Operationally, in order to include the uncertainty associated to the subnational Person-Years estimates in 3,
we assume that the Person-Years L

s

x,a,t for individuals of sex s in an age group x in area a at time t are
normally distributed with a mean equal to the corresponding Person-Years estimate for the age group x from
the subnational life table data referring to sex s, area a and, time t. The variance is calculated through empirical
simulations.

L̃0,a,t ∼ N

(
L̂0,a,t, σ̂

2

L̂0,a,t

)
(8)

L̃
s

x,a,t ∼ N

(
L̂
s

x,a,t, σ̂
2

L̂s
x,a,t

)
(9)

where L̂0,a,t indicates the estimated Person-Years for the age-group 0−4 from a period life table constructed using

mortality rates observed in area a at time t. σ̂
2

L̂0,a,t
is the corresponding variance calculated by means of simu-

lations. This parameter is included to incorporate information about child mortality. Similarly, L̂
s

x,a,t denotes
the estimated sex-specific Person-Years for the age classes x = 10, 15, . . . , 45 for women and x = 10, 15, . . . , 55
for men. Such estimates are obtained from a sex-specific subnational life table referring to area a and time t.

σ̂
2

L̂s
x,a,t

is the corresponding variance of the estimates.

In our US example, we use the estimates of the variances of the subnational death probabilities q̂
s

x,a,t to estimate
the variances of the subnational Person-Years estimates. Specifically, for each combination of age group x, area
a, time t and sex s, we transform the reported death probability estimates (q̂

s

x,a,t) in the logit scale logit(q̂sx,a,t)
and simulate the transformed death probabilities from a normal distribution centered around the subnational
estimate on the logit scale reported in the life table from the US Mortality Database. We draw a random sample
of J logit-transformed death probabilities

logit(q0,a,t)
(j) ∼ N

(
logit(q̂0,a,t),

[ σ̂q0,a,t

q̂0,a,t · (1− q̂0,a,t)

]2)
with j = 1, . . . , J (10)

logit(q
s

x,a,t)
(j) ∼ N

(
logit(q̂

s

x,a,t),

[ σ̂qsx,a,t

q̂
s

x,a,t · (1− q̂
s

x,a,t)

]2)
with j = 1, . . . , J (11)

where J denotes the number of simulated probabilities from the statistical distribution, logit(q
s

x,a,t)
j indicates

the j− th simulated value in the random sample and

[
σ̂
qsx,a,t

q̂
s

x,a,t
·(1−q̂

s

x,a,t
)

]2
is the variance of logit(q̂

s

x,a,t) calculated
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using the Delta Method (see Van der Vaart (2000) for details). The quantity σ̂
2

qsx,a,t
indicates the variance of

the subnational death probability estimates from US mortality database. An identical notation is employed for
the subnational death probability for children aged 0− 4 (q0,a,t).
Afterwards, we transform the previous simulated values into the original scale. From the simulated samples of
death probabilities by age group x, time t, county a and sex s

q
(1)

0,a,t, . . . , q
(j)

0,a,t, . . . , q
(J)

0,a,t

q
s(1)

x,a,t, . . . , q
s(j)

x,a,t, . . . , q
s(J)

x,a,t

(12)

we employ standard life table relationships to obtain samples of the simulated Person-Years by age group x,
sex s, area a and time t.

L̃
(1)

0,a,t, . . . , L̃
(j)

0,a,t, . . . , L̃
(J)

0,a,t

L̃
s(1)

x,a,t, . . . , L̃
s(j)

x,a,t, . . . , L̃
s(J)

x,a,t

(13)

In order to estimate the uncertainty around the Person-Years estimates, we calculate the empirical variance of

the Person-Years values for each combination of time t, sex s, age group x and area a. Hence, σ̂
2

L̂0,a,t
and σ̂

2

L̂s
x,a,t

are estimated as

σ̂
2

L̂
0,a,t

=

J∑
j=1

(
L̃
(j)

0,a,t −
¯̃L0,a,t

)2

J
(14)

σ̂
2

L̂s
x,a,t

=

J∑
j=1

(
L̃
s(j)

x,a,t −
¯̃L
s

x,a,t

)2

J
(15)

where ¯̃L0,a,t =

J∑
j=1

L̃
(j)

0,a,t

J and ¯̃L
s

x,a,t =

J∑
j=1

L̃
s(j)

x,a,t

J are the empirical averages of the simulated Person-Years estimates.

For our U.S. example, we simulate J = 1, 000 values for the Person-Years for each combination of age group x,
sex s, county a and time t.
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Figure 3: J = 50 simulated Person-Years trajectories for Calaveras County in California in year 2000. Simula-
tions are reported for the whole population of the county and by sex.
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In figure 3, we show 50 simulated Person-Years estimates for Calaveras County in California in year 2000 by
age group x and sex s. Given that this county is characterized by a relatively small population (roughly 46, 000
in 2019), we observe some variations in the simulated Person-Years trajectories. Counties with high population
sizes present almost no variation in the simulated Person-Years trajectories. As a consequence, the uncertainty
around the Person-Year estimates from these counties will be very tiny.

2.4 Model summary

The following set of equations summarizes the whole model set up. The number of children aged 0−4 are assumed
to be Poisson-distributed (equation 16). The fertility and mortality parameters that govern the Poisson-process
(equation 17) are specified by imposing a hierarchical structure. Preliminary information about the overall

fertility level is included by placing a probability distribution on the parameter TFR
s

t,a (equation 21) and

on its standard deviation σTFRs
t,a
(equation 22). Prior knowledge about the age-specific fertility patterns is

incorporated by specifying model 18 and a probability distribution on the parameters β
s

1,a,t and β
s

2,a,t (20).
Finally, we include prior knowledge about child and adult mortality by placing a prior probability distributions
directly on the Person-Years parameters (23 and 24)

Ca,t|K
s

x,a,t ∼ Pois

(
ωs∑

x=15

K
s

x,a,tE
s

x,a,t

)
(16)

K
s

x,a,t = TFR
s

a,t ·
L0,a,t

5
· 1
2

[
L
s

x−5,a,t

L
s

x,a,t

· ϕ
s

x−5,a,t + ϕ
s

x,a,t

]
(17)

γ
s

a,t = ms + y
s

1 · β
s

1,a,t + y
s

2 · β
s

2,a,t

γ
s

a,t = [γ
s

15,a,t, . . . , γ
s

ωs,a,t]
(18)

ϕ
s

x,a,t =
exp (γ

s

x,a,t)

ωs∑
x=15

exp (γ
s

x,a,t)

(19)

β
s

1,a,t, β
s

2,a,t ∼ N (0, 1) (20)

TFR
s

t,a ∼ N (TFR
nat,s

t , σ
2

TFRs
t,a
) (21)

σTFRs
t,a

∼ N (0, 2) (22)

L̃0,a,t ∼ N

(
L̂0,a,t, σ̂

2

L̂0,a,t

)
(23)

L̃
s

x,a,t ∼ N

(
L̂
s

x,a,t, σ̂
2

L̂s
x,a,t

)
(24)

The subscript s refers to sex, the subscript t refers to time and the subscript a denotes the subregion. The
subscript x denotes the age with ωs being the last reproductive age group. ωs is set to be 45 − 49 for women
and 55− 59 for men.

2.5 Model implementation

Our final goal is to draw sample from the posterior distribution of the TFR
s

a,t in an area a at time t conditional

on the observed number of children aged 0-4 Ca,t and the counts of men (women) E
s

15,a,t, . . . , E
s

ωs,a,t. Note that
we do not place any probability distribution on the number of exposed men and women.
If we let θ

s

t,a = (TFR
s

a,t, σTFRs
t,a
,β

s

a,t, L̃0,a,t, L̃
s

a,t) be a vector containing the model parameters with L̃
s

a,t =

[L̃
s

15,a,t, . . . , L̃
s

ωs,a,t] and β
s

a,t = [β
s

1,a,t, β
s

2,a,t], the posterior distribution for the model parameters conditional on
the observed data is given by
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P(θ
s

t,a|Ca,t,E
s

a,t) ∝ L(Ca,t|θ
s

t,a) · fTFR(TFR
s

a,t) · fσ(σTFRs
t,a
) ·

2∏
i=1

fβ(β
s

i,a,t) · fL0
(L̃0,a,t) ·

ωs∏
j=1

fLs(L̃
s

j,a,t) (25)

where L refers to the likelihood of the Poisson and the functions f denote the prior densities for the unknown
parameters.

The marginal posterior for TFR
s

a,t is obtained by integration.

P(TFR
s

a,t|Ca,t) =

∫
P(θ

s

t,a|Ca,t,E
s

a,t)dσTFRs
t,a
dβ

s

a,tdL̃0,a,tdL̃
s

a,t (26)

Operationally, posterior samples were obtained using Markov Chain Monte Carlo (MCMC) algorithm imple-
mented in Stan by means of the package rstan available in the Statistical Software R (see Carpenter et al.
(2017) for details).

3 Data Application

3.1 Application to US counties

We applied our proposed model to estimate period TFRs by US counties for the historical period 1982− 2019.
We used population data from the US censuses (downloaded from the website www.census.gov/en.html). Na-
tional TFR values were retrieved from the Human Fertility Database for women and from the Human Fertility
Collection for men. 1, 000 simulations were carried out for the estimation of the variances of the Person-Years.
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Figure 4: Times series of men’s and women’s period TFR estimates for six U.S. counties across the period
1982− 2019. 90% credible intervals are also provided. The dotted line represents the replacement fertility level
of 2.1.

Figure 4 displays TFR estimates for six US counties characterized by distinct age-sex population structures and
from states exhibiting different fertility levels for the period 1982− 2019. The top two graphs show the TFRs
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for two rural counties with small population sizes (less than 10, 000 in 2019), one in Utah and one in South
Dakota. In the Utah county, we observe that as the TFR declines for both the men and women towards the
replacement value of 2.1, their fertility levels seem to overlap. Conversely, in the South Dakota county the TFR
remains well above 3, the TFR of men surpasses that of women for the whole historical period. The middle two
graphs show the results for two counties with TFRs close to the replacement levels, namely Los Angeles county
in California and Colbert County in Alabama. The former does not display significant differences between
men’s and women’s fertility. On the contrary, the latter shows a convergence of the fertility behaviors of men
and women. Nonetheless, up to the early 2000s, this county clearly display higher fertility levels among women
than among men. The third row display the results for two counties characterized by low fertility levels, New
York City county in New York and Middlesex County in Massachusetts. New York City county presents no
significant differences between men and women across time and fertility levels below 1.5. Note that in this
county we may underestimate the TFRs of both man and women as many individuals in the age range 20− 30
may live New York City for working reasons and may have their own family elsewhere. Middlesex County is
characterized by low fertility levels throughout the historical period in examination and does not display any
noteworthy differences between men and women.

4 Concluding Remarks and Future Developments

4.1 Concluding Remarks

Building on previous work by Schmertmann and Hauer (2019), we have proposed a Bayesian hierarchical
model to estimate subregional TFRs for both men and women using minimal data from age-sex population
pyramids. Our proposed model relies on standard age-specific fertility schedules, on national fertility levels as
well as on subnational mortality estimates to capture the inherent uncertainty in the demographic parameters
that govern the Poisson-process for modelling number of children. Age-specific fertility schedule are informed
by characteristic age-specific fertility curves for both men and women. Preliminary knowledge on the TFR
parameter is partially informed by the national TFR. The availability of detailed subregional mortality data for
the US enables us to place a prior probability distribution directly on the Person-Years without the necessity
to employ more sophisticated mortality models. The application of the proposed model to US counties yielded
distinctive fertility trajectories for men and women, prompting the need for further investigation.

4.2 Future Developments

In the upcoming months, we wish to refine our model so that it is flexible enough to allow the estimation
of subnational TFR levels for multiple countries. This might involve employing different statistical models
and priors for the fertility and mortality parameters as well as enlarging the male reproductive age span.
Additionally, we recognize the importance of understanding the impact of the number of exposed men and
women in the estimation of the TFR. In subregions experiencing high female or male migration, disparities
between male and female TFRs may be biased. For this reason, we aim to examine the possible effect of
migration on the TFR estimates of our proposed model.
Overall, we argue that this research paper could provide significant contributions to the field of small-area
fertility estimation. By estimating subnational fertility levels for both men and women in a wide variety of
countries, we intend to shed new light on our understanding of subregional fertility trends in contemporary
societies.
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