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Introduction

A rich body of demographic research has investigated the relationship between educa-

tional attainment and fertility behavior. Yet, the existing studies provide mixed findings.

On the one hand, individuals (mostly women) with higher level of education are more

likely to pursue their careers, postpone parenthood (Mills et al. 2011) and eventually have

fewer children (Martı́n-Garcı́a & Baizán 2006, Brand & Davis 2011). On the other hand,

highly educated individuals can also mate with other highly educated people (Oppen-

heimer 1994) which, in return, allow them to form families with higher resources with

more equal division of domestic work and possibility to outsource housework and child-

care (Behrman & Rosenzweig 2002). Following this approach, research has shown that

highly-educated couples have overall higher fertility (Mencarini & Tanturri 2006) or the

fertility gap between low and high-SES disappears at later ages (Sobotka 2004).

Within this ample literature, the genetic propensity of reproductive behavior remains

an overlooked factor. Fertility is a complex process that has been mutually shaped by so-

cial and biological mechanisms and their interactions (Almeling 2015, Harris & McDade

2018). Indeed, (Tropf & Mandemakers 2017) shows that genetic, familial and social fac-

tors act jointly in influencing the relationship between education and age at first birth.

From a theoretical standpoint, leaving genetic mechanisms out of picture limits our un-

derstanding the way education influences fertility. From an empirical viewpoint, given
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that both educational attainment and fertility behavior has a significant genetic compo-

nent (Mills & Tropf 2015), omitting genetic factors would bias the estimates and could

overstate the effect of environmental factors (Harris & McDade 2018).

This study aims at addressing the aforementioned gaps through investigating gene-

environment interplay for fertility behavior. We exploit RoSLA reform which increased

compulsory schooling age in UK from 15 to 16 in 1972 as a natural experiment to uncover

the causal impact of education on women’s and men’s fertility. Furthermore, we interact

the effect of RoSLA with polygenic indices (PGIs - also termed as polygenic scores or

polygenic risk scores) on educational attainment and fertility (age at first birth forwomen,

number of children ever born for men), to examine whether the genetic make-up play a

moderating role in the relationship between education and fertility.

We expect that an increase in compulsory schooling age can be particularly effective in

reducing teenage fertility and out-of-union fertility through forcing young adults to stay

in education for at least one year. Staying in education longer may also alter teenagers

educational and career aspirations and may lead to continue higher levels of education,

which in return can also shape their adulthood fertility trajectories.

Data and Methods

Sample

This study makes use of UK Biobank (UKB), a survey that interviewed 502,506 out of 9.2

million NHS registered individuals aged between 40 and 69. Along with socio-economic

and demographic information, samples of blood, urine and saliva are collected. Each

survey participant is genotyped which makes UKB one of the largest publicly available

data source for genetics research (Barban et al. 2021). However, UKB is not a nationally-

representative sample as the data collection was volunteering-based. This led UKB to be

healthier and of higher socioeconomic status than the general UK population (Fry et al.

2017). Volunteering-based participation to data leads to bias in estimations, and the di-

rection of the bias is not known a priori as it depends on the variables driving the selection

into participation in the first place, and how these variables are linked to the exposure and

the outcome variables of interest (van Alten et al. 2023). To correct for this bias, van Alten

et al. (2023) constructed an inverse probability weights which reduces 87% of volunteer

bias on average. We employ these weights throughout our analyses.
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Variables

As reproductive outcomes, we rely on several indicators; age at first sexual intercourse,

age at first birth (collected only for women), number of children ever-born and child-

lessness. We categorize participants as childless, if the participant haven’t declared any

children at the time of the interview. For women, we also examine at the probability of

giving a teenage birth by using the probability of giving birth by age 15 to 20 separately

as outcome variables.

We identify the exposure to RoSLA reform using the information on month and year

of birth. RoSLA increases the minimum school-leaving age in England, Scotland, and

Wales is from 15 to 16 for students born on or after September 1, 1957. The students who

were born before this date could drop out at age 15. As a result, RoSLA reform generated

a discontinuity in the relationship between education and date of birth. Exploiting this

exogenous discontinuity, we categorize individuals who were born after September 1,

1957 as the treatment group, while the ones who were born before are classified as control

group.

The PGIs we used in the main analysis are based on the Polygenic Index Repository

established by Becker et al. (2021). The repository contains PGIs for 47 outcomes (pheno-

types) from 11 datasets that collects genetic information. From this repository we rely on

PGIs for educational attainment (PGI-EA) and number of children ever born (PGI-NEB)

for men. 1

Empirical Strategy

Building on the specification suggested by Barcellos et al. (2018), we estimate the follow-

ing model :

Fertilityi = α+ β1Gi + β2Ei + β3(GixEi) + β4X
′
i + εi (1)

where Fertilityi corresponds to reproductive outcomes such as age at first sexual in-

tercourse, age at first birth (only for women), probability of giving first birth by age 15

to 20 (only for women) number of children ever born or childlessness, Gi is the geno-

type (educational attainment or fertility) of the individual i, Ei measures the effect of

environment, in our case indicator of staying in school until the age 16, GixEi is the in-

terplay between genetic influences and environment, X ′
i is a set of control including age,

1For more information on PGI repository, see: https://www.thessgac.org/pgi-repository.
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age squared, country of birth and month of birth and εi represents the idiosyncratic error

term.

However, decision to stay in education until the age 16 may be correlated with other

factors (e.g. physical health), which could be also correlated with that person’s fertility

decision. In order to address the omitted variable bias, we exploit the RoSLA reform that

is enacted in 1972 as an instrument forEi. Then, we estimate thismodel using a regression

discontinuity (RD) design in which the date of birth constitutes the running variable.

We restrict the data to the participants born in England, Scotland, or Wales within 10

years of September 1957 – who were born between September 1, 1947 and August 31, 1967.

Results

First stage

In Figure 1 we present the fraction of female (left panel) and male (right panel) students

who left the school by the age of 15. Right before the RoSLA reform, around 10 percent of

the female students and around 15 percent of the male students were leaving the school

by age 15. However, after the reform (i.e. for the students who were born after Septem-

ber 1, 1957), the same ratio declined significantly, until around 3 percent both for men

and women. This discontinuity documents a convincing evidence on the effectiveness of

RoSLA reform in increasing the school leaving age.

Reproductive outcomes

Table 1 shows the effect of being exposed to RoSLA reform on the age at first sex, number

of children ever-born and probability of remamining childless both for women and men.

Looking at the left panel, we see that women who are treated by RoSLA, have their first

sexual intercourse later, have fewer children and they are more likely to remain childless.

Yet, none of the coefficients are statistically meaningful. On the other hand, men who are

exposed to RoSLA have their first sexual intercourse earlier, have fewer children and they

are less likely to remain childless. However, similar to women’s reproductive outcomes,

coefficients for men are also not statistically significant.

Table 2 instead focuses only onwomen and shows the effect of being exposed to RoSLA

on timing of fertility. Accordingly, women who were affected by the RoSLA reform give

birth, on average, 1.4 years later (p<0.05) compared to their counterparts who were not

exposed to the reform. Moreover, we find that women who are exposed to RoSLA have
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Figure 1: Proportion of women and men left school by the age 15 before and after the

RoSLA

Table 1: The effect of RoSLA reform on women and men’s reproductive outcomes

Women Men

N of children Childlessness Age at FS N of children Childlessness Age at FS

Stayed in school until 16 -0.129 0.032 0.311 -0.093 -0.038 -0.224

(0.146) (0.045) (0.384) (0.203) (0.064) (0.653)

Observations 137,651 137,651 126,074 110,588 110,588 102,161

R-squared 0.012 0.009 0.023 0.007 0.001 0.001

Mean 1.63 0.27 18.45

Fstat 470.7 470.7 420.2 405 405 344.5

Notes: Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

significantly lower probability to give their first birth by age 18 (p<0.05). This postpone-

ment effect persists also for the age 19 and 20 (p<0.1).
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Table 2: The effect of RoSLA reform on women’s age at first birth

Age at FB FB by 15 FB by 16 FB by 17 FB by 18 FB by 19 FB by 20

Stayed in school until 16 1.406* -0.009 -0.008 -0.068+ -0.109* -0.102+ -0.100+

(0.658) (0.008) (0.022) (0.037) (0.047) (0.055) (0.059)

Observations 88,896 88,896 88,896 88,896 88,896 88,896 88,896

R-squared 0.067 0.003 0.006 0.024 0.040 0.047 0.050

Mean 0 0.01 0.05 0.09 0.14

Fstat 317 317 317 317 317 317 317

Notes: Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The interplay between genes and environment

Table 3: Gene-environment interplay - fertility

Women Men

N of child Childlessness Age at FS N of children Childlessness Age at FS

LowPGI * treated -0.852 0.172 0.254 -0.896 -0.327 -5.862+

(0.683) (0.226) (2.097) (1.175) (0.326) (3.354)

MidPGI * treated -0.801 0.233 -0.214 -1.546 -0.214 -3.488

(0.727) (0.240) (2.308) (1.130) (0.311) (3.065)

HighPGI * treated -1.161 0.263 -1.573 -1.321 -0.181 -5.418+

(1.005) (0.345) (3.444) (1.110) (0.292) (2.896)

LowPGI * control 0.084 -0.045 -3.182 -0.627+ 0.206+ 1.442

(0.593) (0.204) (2.018) (0.341) (0.114) (1.211)

MidPGI * control -0.152 -0.038 -2.102 0.095 0.053 -1.092

(0.523) (0.182) (1.740) (0.258) (0.080) (0.767)

Observations 43,263 43,263 39,506 35,533 35,533 32,679

Notes: Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

As next step, we estimate whether the effect of RoSLA on reproductive outcomes de-

pends on the genetic propensity for fertility. Forwomen, we used the polygenic indices for
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age at first birth, while for men we used the polygenic indices for number of children ever

born. According to Table 3 the effect of RoSLA on women’s reproductive outcomes, such

as age at first sexual intercourse, number of children and the probability of remaining

childless does not vary by genetic propensity for fertility. However, as compared to high

PGI men who were not treated by RosLA, low PGI and high PGI men who are exposed to

fertility have their first sex earlier. Even though the effect is significant at 10 percent, the

magnitude is considerably sizeable (5.5 to 6 years). Thus, it requires further investigation.

Table 4 instead focuses solely onwomen and reports the gene-environment interaction

coefficients for the timing of fertility. Accordingly, the effect of RoSLA on the timing of

fertility is not moderated by genetic propensity to later or earlier age at first birth.

Table 4: Gene-environment interplay - fertility timing

VARIABLES Age at FB FB by 15 FB by 16 FB by 17 FB by 18 FB by 19 FB by 20

LowAFB * treated 4.398 -0.009 0.012 -0.281+ -0.265 -0.153 -0.167

(2.903) (0.031) (0.079) (0.160) (0.192) (0.237) (0.262)

MidAFB * treated 4.409 -0.028 0.018 -0.261 -0.238 -0.095 -0.094

(2.956) (0.031) (0.085) (0.165) (0.203) (0.247) (0.270)

HighAFB * treated 6.772 -0.009 0.076 -0.196 -0.071 0.236 0.263

(4.266) (0.046) (0.116) (0.215) (0.270) (0.332) (0.369)

LowAFB * control -1.021 0.002 0.077 0.120 0.268 0.511* 0.598**

(2.674) (0.037) (0.070) (0.129) (0.166) (0.201) (0.225)

MidAFB * control 0.419 0.017 0.063 0.079 0.191 0.383* 0.425*

(2.395) (0.032) (0.059) (0.109) (0.141) (0.174) (0.198)

Observations 27,836 27,836 27,836 27,836 27,836 27,836 27,836

Notes: Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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