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Abstract

Migration is a complex process and difficult to predict. Nevertheless, predictions

of migration are vital for demographic projections and policy making. At the same

time, migration is known to be a highly gendered process reflecting different mo-

tivations, propensities, and outcomes of migration by gender. Such differences are

mirrored in the fact that on average 44.7% of the bilateral migration corridors world-

wide are male-dominated while only 28.2% are female-dominated. As theories and

models have been shaped over decades around the narrative of the male migrant,

this can potentially translate into discrepancies in migration predictions by sex.

Using one of the most comprehensive macro-level data sets on bilateral migration

flows disaggregated by sex, we aim to explore and understand such differences in

migration predictions. We compare the predictive performance of a basic gravity

model with demographic and geographic covariates to an extended version of that

model including gender-sensitive predictors. Our preliminary findings show that

indeed worse performance measures are achieved for female migration flows com-

pared to male when applying the baseline model. Expanding the model by adding

gender-sensitive indicators improves the model performance for the predictions. The

next steps involve comparing other common demographic and econometric models

of migration prediction. Further enhancing our understanding of the underlying

mechanisms resulting in different prediction accuracy has the potential to inform

the work of international organizations, researchers, and policy-makers.
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1 Introduction

Migration is a complex process sensitive to the environment surrounding it, mak-

ing it the most volatile demographic process and difficult to predict. Nevertheless,

demographers and policymakers need reliable predictions of migration in order to an-

ticipate migration flows and inform policies and population projections. Therefore,

theories of international migration have emerged trying to explain why some people

migrate and others do not. Such theories have translated into statistical methods

for migration prediction of which many are applied by researchers and international

organizations in their daily work. However, migration theories have been found to

disregard gender-specific aspects of the migration process and therefore fall short of

explaining patterns of female migration (Boyd & Grieco, 2003). The migration data

landscape tells a similar story. Comprehensive sources for international migration

data disaggregated by sex or gender are scarce (Hennebry, KC, & Williams, 2021).

Several works aim to evaluate the performance of models predicting migration

(Welch & Raftery, 2022; Brücker & Siliverstovs, 2006). As of yet, no attempt

has focused particularly on heterogeneities by sex or gender. This work strives

to compare the predictive performance of the most common models in order to

understand potential discrepancies by sex. In particular, we try to explore and

discover differences in the models’ predictive performances by sex. By adapting the

models based on recent insights on gender differences in migration patterns, we want

to understand why some flows are female- or male-dominated and develop statistical

models that perform equally well for all sexes. Thereby, we want to shed light on

sex biases, understand their structures and origins, and suggest how they can be

mitigated.

2 Data

The migration data type that can provide the clearest picture of the sex composition

of migration is migration flow data (Dennett, 2016). These data measure the number

of people who changed their residence over a specific time interval (Yildiz & Abel,

2021). One of the few comprehensive databases providing sex-disaggregated inter-

national migration flows are the bilateral international migration flow estimates for

200 countries by G. Abel (2022a). These estimates were derived by G. Abel (2022b)

based on migrant stocks and cover five year time intervals from 1990 to 2020.

2.1 Gendered patterns of international migration

Exploring some migration corridors more closely reveals that female and male migra-

tion behave differently and sometimes even exhibit diverging time trends. Overall,

44.7% of the bilateral migration corridors in the data set are male-dominated on aver-
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age over time while only 28.2% are dominated by female migrants with the remaining

ones being gender balanced (when looking at the Pseudo Bayes estimates produced

by G. Abel (2022b). In almost half of the male-dominated corridors, the difference in

the male share on the flow is larger than 25 percentage points. Two illustrative ex-

amples are the Mexico-United States migration corridor and the Kazakhstan-Russia

corridor. While the former tends to be historically male-dominated, the latter tends

to be dominated by female migration. According to the theory, the motivations of

the migrants constituting these two flows should be fairly similar. However, they

display notably different patterns (see Figure 2.1). Such observations trigger our

curiosity given that researchers are trying to predict these patterns with the same

types of models.

Figure 1: Migration flow count (in millions) by sex between Mexico and the US and

between Kazakhstan and Russia from 1990 to 2020.

However, the picture drawn by the bilateral flow estimates should be interpreted

with caution. Since the estimates were derived based on migrant stocks from time

points that are five years apart, some gendered patterns might be obscured. Cor-

ridors like the ones referred to above, are known for enhanced seasonal and return
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migration patterns. These and other limitations of the estimates will be discussed

in the following subsection.

2.2 Migration flow estimates

The methods that were applied by G. J. Abel and Cohen (2019); G. Abel (2022b)

to produce the estimates are based on various assumptions.

In the usage notes, G. J. Abel and Cohen (2019) list limitations that affect all six

estimation methods. One is that at least half of the estimated bilateral migration

flows are zero. The estimates do not take into account additional migration events to

countries outside the set of countries in the data set and return migrations during the

five year time intervals. Moreover, estimates of bilateral migration flows produced by

stock differencing or demographic accounting methods produce minimum estimates

of flows (G. J. Abel & Cohen, 2019). Furthermore, estimates produced by the

stock differencing and migration rates approaches ignore changes in the stocks due

to deaths of migrants. This could potentially lead to an overestimation of migrant

stocks especially in the presence of elderly migrants. While estimates produced with

the demographic accounting methods take into account death and birth rates, these

rates are assumed to be the same for foreign-born and native-born populations.

Moreover, the validation of the measure could only be carried out for countries

where migration flow data were reported, namely rich Western countries (G. J. Abel

& Cohen, 2019).

G. Abel (2022b) use sex-specific inputs, namely sex-specific population counts,

numbers of births and deaths where available, to derive the sex-specific bilateral

flow estimates. However, for counties where information on the sex characteristics

of migrants are missing, UN DESA imputed the data based on a regional or country

model (G. Abel, 2022b). Not capturing gender-differences directly but inferring

them might additionally lead to a general underestimation of these differences. All

the assumptions have not been altered for female and male migration flows across

the different estimation methods. Potential sources of gender bias in the estimation

methods are therefore measurement error and imputation methods applied to the

stock estimates by UN DESA.

Moreover, the estimates tend to underestimate overall migration flows due to

the long time intervals. Consequently, this approach might underestimate the gen-

der differences between the flows as well. As we know very little about South-

South migration due to data scarcity, validating the sex-disaggregated estimates for

non-Western countries is not possible. The determinants of emigration to wealthy

countries certainly differ from determinants of emigration from wealthy countries

(Massey, 2006). Therefore, we can expect the sex-composition of these flows to be

different due to gendered immigration policies in Global North countries and an

access to resources to migrate stratified by gender (Anastasiadou, Kim, Sanlitürk,
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de Valk, & Zagheni, 2023).

2.3 Demographic and geographic variables

For the following analysis, we included country-level data on the population of the

countries of origin and destination POP , the share of the population residing in

urban areas URB, the infant mortality ratio IMR, the potential support ratio (i.e.

the number of persons aged 15-64 per person aged 65+ multiplied by 100) PSR, and

the land area in squared kilometers LA. All these variables were obtained from the

World Bank’s World Development Indicators at the start of each period t (World

Bank, n.d.). Indicators on shared land borders between countries LB, shared of-

ficial language OL, and ever existing colonial relationship between the countries

COL were obtained from the Centre d’Etudes Prospectives et d’Informations In-

ternationales (CEPII) gravity database (Conte, Cotterlaz, & Mayer, 2022). Ge-

ographic coordinates were obtained from the countryref dataset in the coordinate

cleaner package in R and used for calculating the bilateral distances to the countries’

capital cities (Zizka et al., 2019).

2.4 Gender-sensitive migration indicators

For the extended version of the gravity model, we include gender-sensitive indicators

to the estimation. The indicators were chosen based on our findings in a previous

project in which we mapped out differences in the determinants, motivations, and

obstacles to migrate for female compared to male migrants (Anastasiadou et al.,

2023). The gender-sensitive predictors selected include an indicator for equal rights

in the country of destination and origin proxied by a binary variable that equals one

when men and women have the same right to divorce a spouse EQ. The indicator

for equal economic opportunities is a binary variable that equals one when women

and men face the same conditions when opening a business BUS. In order to proxy

safety, we include a binary variable that equals one when legislation addressing do-

mestic violence exists in the respective country SAF . An indicator for free mobility

is a binary variable indicating that women and men can travel in the same way out-

side the country when equal to one TRV . These variables were obtained from the

Gender Statistics database provided along with the World Development Indicators

by the World Bank (World Bank, n.d.).

The baseline model developed by Kim and Cohen (2010) and employed by Welch

and Raftery (2022) includes only demographic and geographic explanatory variables

and no economic indicators. Therefore, we refrain from including gender-sensitive

economic variables (like gender wage gaps, female employment rates, etc.). Such

predictors would naturally have high explanatory power and obscure the picture.

But we consider including them in a later stage of the analysis.
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3 Methodology

In order to evaluate migration predictions by sex, we plan to produce predictions for

the time period 2015-2020 by fitting a number of models for migration predictions to

the data from 1990-2015. Starting with a baseline gravity model without economic

predictors as developed by Kim and Cohen (2010) and later employed by Welch

and Raftery (2022), we estimate gravity models for total flows and female and male

flows separately.

The following equation describes the model specification of the baseline gravity

model setup. The subscripts i and j stand for country of origin and destination

respectively. The variables and their abbreviations have been described in more

detail in the previous section. We fit the model to the time period 1990-2015 for

each of the six different time series of estimates produced by G. Abel (2022b).

log(mi,j,t) = β0 + β1log(GDPi,t) + β2log(GDPj,t) + β3log(Di,j) + β4log(PSRi,t)

+β5log(PSRj,t) + β6log(URBi,t) + β7log(URBj,t) + β8log(IMRi,t)

+β9log(IMRj,t) + +β10log(LAi) + β11log(LAj) + β12LBi,j

+β13OLi,j + β14COLi,j + β15(t− 2005) + β16(t− 2005)2 + ϵi,j,t
(1)

The above variables and gravity model variables more generally are derived based

on the theory of pull and push factors of migration and have been widely used for

migration modelling since the 1940s (Lee, 1966; Pu, Zhao, Chi, Zhao, & Kong, 2019).

However, literature has found that female and male migrants react differently to such

factors in some cases. For instance, women have been found to be less sensitive to the

distance between the origin and destination (Beine & Salomone, 2013). Moreover,

labor-market-based explanations of migration do not take into account that labor

markets are stratified by gender and hence fail to explain the sex composition in

migration corridors as the ones illustrated in Figure 2.1 (Pedraza, 1991).

Therefore, we also estimate an extended version of the baseline gravity model

including the above described gender-sensitive indicators.

log(mi,j,t) = β0 + β1log(GDPi,t) + β2log(GDPj,t) + β3log(Di,j) + β4log(PSRi,t)

+β5log(PSRj,t) + β6log(URBi,t) + β7log(URBj,t) + β8log(IMRi,t)

+β9log(IMRj,t) + +β10log(LAi) + β11log(LAj) + β12LBi,j

+β13OLi,j + β14COLi,j + β15(t− 2005) + β16(t− 2005)2

+β17EQi,t + β18EQj,t + β19BUSi,t + β20BUSj,t + β21SAFi,t

+β22SAFj,t + β23TRVi,j + β24TRVj,t + ϵi,j,t
(2)

In order to evaluate biases that arise from gender-blind theories and models, our

methodological approach is to comparing these two predictive models based on their
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performance in predicting migration flows by sex.

We rely on the out-of-sample mean absolute error for point forecasts as applied

in Welch and Raftery (2022) to evaluate the predictions across models.

MAPE(M, M̃) =
100

F

∑
i ̸=j

| mi,j − m̃i,j |
mi,j + 1

(3)

with F denoting the total of flows contained in the flow matrix M.

4 Preliminary Findings

After fitting the two models to each of the six estimates produced by G. Abel (2022b)

for the three categories total, male, and female, we can observe a weaker predictive

performance of the models for the female data set. For both models, we ruled out

multicollinearity issues by checking the variance inflation factors for each estimation.

Tables containing detailed results can be found in the Annex 6.

4.1 Baseline gravity model

For the predictions derived based on the baseline gravity models, we can clearly

see a pattern of differences by sex. The MAPE values in Figure 4.1 are the lowest

for the models of total flows, while they are notably higher for the prediction by

the models that were fitted to the female data. These preliminary results indicate

differences in the prediction accuracy by sex which will be further explored in this

paper.
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4.2 Extended gravity model 4 PRELIMINARY FINDINGS

Figure 2: MAPE values for predicting migration flows in the period 2015-2020 with

the baseline gravity model by using all different six estimators separately for male,

female, and total flows.

4.2 Extended gravity model

Extending the gravity model by adding gender-sensitive variables yields an overall

better model fit as can be judged by the R2 values in the output tables in the

Annex 6. Also, the majority of the MAPE values have improved slightly. The

values in Figure 4.2 show a clear picture of improvement after adding the gender

indicators to the model specification.
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5 PRELIMINARY CONCLUSION

Figure 3: MAPE values for predicting migration flows in the period 2015-2020 with

the extended gravity model by using all different six estimators separately for male,

female, and total flows.

Unfortunately, the gender indicators are largely time-invariant and contain also a

lot of missing values. Therefore, the number of observations included to fit the model

shrank notably for the extended gravity model. Future steps will address this issue

by finding better indicators with better time and regional coverage. However, further

investigation is needed to understand whether the gender-sensitive indicators explain

more variance regardless of the sex category or if they can improve specifically the

predictions of female migration flows.

5 Preliminary Conclusion

The results of the preliminary analysis point to a discrepancy in predictive migration

model performance by sex that deserves further exploration and understanding.

The next steps include the evaluation of other more advanced models for migration

predictions including econometric and demographic methods. For instance, models

that acknowledge the count character of the data and do not assume normality like

the Poisson-hurdle model or generalized linear models. This will be complemented

by a thorough analysis of the potential drivers of the differences.

Knowing that for some regions the estimates produced by G. Abel (2022b) are

less certain than for others, we will also assess the performance of the predictions for

sub samples of the data by removing migration corridors with high uncertainty in the
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5 PRELIMINARY CONCLUSION

estimates (Azose & Raftery, 2015). We are planning to validate them against other

migration flow data should the results be consistent. Moreover, other limitations

of the data include the certainty about the sex classification in each corridor based

on the data it was derived from. Such limitations will be addressed by focusing on

corridors where data collection is more transparent and reliable than in others.

The goal of this work is to assess potential sex differences in migration predic-

tions of common methods. Advancing our understanding of such differences and

their origins can improve models of migration predictions and their outcomes. This

will help researchers to understand female- and male-dominated migration corridors

better and can inform migration theories. Consequently, our results can have direct

implications for international organizations, researchers, and policy makers.
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6 ANNEX

log(sd drop neg) log(sd rev neg) log(mig rate)

(1) (2) (3)

log(POPo) 0.591∗∗∗ 0.598∗∗∗ 0.625∗∗∗

(0.010) (0.009) (0.009)

log(POPd) 0.599∗∗∗ 0.522∗∗∗ 0.582∗∗∗

(0.010) (0.009) (0.009)

log(dist) −0.990∗∗∗ −1.060∗∗∗ −1.122∗∗∗

(0.013) (0.012) (0.012)

log(PSRo) −0.199∗∗∗ −0.075∗∗∗ −0.425∗∗∗

(0.026) (0.025) (0.023)

log(PSRd) 1.081∗∗∗ 0.517∗∗∗ 0.911∗∗∗

(0.030) (0.027) (0.026)

log(IMRo) −0.026 −0.104∗∗∗ −0.099∗∗∗

(0.019) (0.018) (0.017)

log(IMRd) −1.248∗∗∗ −0.935∗∗∗ −0.974∗∗∗

(0.022) (0.020) (0.019)

log(URBo) −0.016 0.065∗∗ 0.089∗∗∗

(0.031) (0.029) (0.027)

log(URBd) 0.227∗∗∗ 0.178∗∗∗ 0.285∗∗∗

(0.041) (0.034) (0.033)

log(LAo) −0.042∗∗∗ −0.017∗∗ −0.031∗∗∗

(0.008) (0.008) (0.007)

log(LAd) 0.094∗∗∗ 0.098∗∗∗ 0.151∗∗∗

(0.008) (0.008) (0.007)

LB 1.346∗∗∗ 1.508∗∗∗ 1.562∗∗∗

(0.058) (0.053) (0.048)

OL 1.574∗∗∗ 1.506∗∗∗ 1.704∗∗∗

(0.031) (0.029) (0.027)

COL 1.236∗∗∗ 1.383∗∗∗ 1.504∗∗∗

(0.066) (0.064) (0.057)

t −0.061∗∗∗ −0.064∗∗∗ −0.021∗∗∗

(0.003) (0.003) (0.003)

t2 −0.001∗∗∗ −0.002∗∗∗ 0.001∗∗∗

(0.0003) (0.0002) (0.0002)

Constant −4.427∗∗∗ −0.276 −1.449∗∗∗

(0.370) (0.344) (0.321)

Observations 35,071 42,845 44,886

Adjusted R2 0.460 0.449 0.517

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: OLS regression results for the baseline gravity model for total migration

flows. 14
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log(da min open) log(da min closed) log(da pb closed)

(1) (2) (3)

log(POPo) 0.728∗∗∗ 0.609∗∗∗ 0.608∗∗∗

(0.009) (0.009) (0.007)

log(POPd) 0.451∗∗∗ 0.430∗∗∗ 0.557∗∗∗

(0.009) (0.009) (0.007)

log(dist) −1.429∗∗∗ −1.317∗∗∗ −1.676∗∗∗

(0.013) (0.013) (0.011)

log(PSRo) 0.235∗∗∗ 0.488∗∗∗ 0.178∗∗∗

(0.023) (0.022) (0.018)

log(PSRd) 0.080∗∗∗ 0.272∗∗∗ −0.018

(0.022) (0.023) (0.017)

log(IMRo) −0.215∗∗∗ −0.296∗∗∗ −0.798∗∗∗

(0.018) (0.017) (0.014)

log(IMRd) −1.281∗∗∗ −1.331∗∗∗ −1.303∗∗∗

(0.018) (0.018) (0.014)

log(URBo) 0.343∗∗∗ 0.015 −0.015

(0.027) (0.027) (0.022)

log(URBd) 0.452∗∗∗ 0.231∗∗∗ 0.283∗∗∗

(0.030) (0.030) (0.023)

log(LAo) 0.014∗ 0.090∗∗∗ 0.186∗∗∗

(0.008) (0.008) (0.006)

log(LAd) 0.231∗∗∗ 0.254∗∗∗ 0.237∗∗∗

(0.007) (0.007) (0.006)

LB 1.249∗∗∗ 1.325∗∗∗ 2.110∗∗∗

(0.065) (0.070) (0.059)

OL 1.810∗∗∗ 1.751∗∗∗ 2.088∗∗∗

(0.029) (0.030) (0.024)

COL 1.620∗∗∗ 1.781∗∗∗ 2.602∗∗∗

(0.078) (0.083) (0.071)

t −0.052∗∗∗ −0.063∗∗∗ −0.078∗∗∗

(0.003) (0.003) (0.002)

t2 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0002) (0.0002) (0.0002)

Constant 0.777∗∗ −0.150 8.273∗∗∗

(0.343) (0.344) (0.278)

Observations 76,383 80,887 117,990

Adjusted R2 0.493 0.446 0.536

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: OLS regression results for the baseline gravity model for total migration

flows (cont’d). 15



6 ANNEX

log(sd drop neg) log(sd rev neg) log(mig rate)

(1) (2) (3)

log(POPo) 0.561∗∗∗ 0.555∗∗∗ 0.607∗∗∗

(0.010) (0.009) (0.008)

log(POPd) 0.541∗∗∗ 0.480∗∗∗ 0.542∗∗∗

(0.010) (0.009) (0.009)

log(dist) −0.945∗∗∗ −0.986∗∗∗ −1.078∗∗∗

(0.014) (0.013) (0.011)

log(PSRo) −0.152∗∗∗ −0.081∗∗∗ −0.385∗∗∗

(0.026) (0.025) (0.023)

log(PSRd) 1.115∗∗∗ 0.667∗∗∗ 0.946∗∗∗

(0.029) (0.027) (0.026)

log(IMRo) 0.0002 −0.071∗∗∗ −0.055∗∗∗

(0.019) (0.019) (0.017)

log(IMRd) −1.135∗∗∗ −0.863∗∗∗ −0.941∗∗∗

(0.022) (0.020) (0.019)

log(URBo) 0.011 0.082∗∗∗ 0.101∗∗∗

(0.031) (0.029) (0.027)

log(URBd) 0.251∗∗∗ 0.223∗∗∗ 0.326∗∗∗

(0.041) (0.035) (0.032)

log(LAo) −0.045∗∗∗ −0.010 −0.040∗∗∗

(0.008) (0.008) (0.007)

log(LAd) 0.119∗∗∗ 0.112∗∗∗ 0.172∗∗∗

(0.008) (0.008) (0.007)

LB 1.257∗∗∗ 1.427∗∗∗ 1.502∗∗∗

(0.058) (0.053) (0.047)

OL 1.403∗∗∗ 1.337∗∗∗ 1.573∗∗∗

(0.031) (0.029) (0.026)

COL 1.271∗∗∗ 1.358∗∗∗ 1.529∗∗∗

(0.066) (0.064) (0.055)

t −0.049∗∗∗ −0.051∗∗∗ −0.015∗∗∗

(0.003) (0.003) (0.003)

t2 −0.001∗∗ −0.001∗∗∗ 0.001∗∗∗

(0.0003) (0.0003) (0.0002)

Constant −5.524∗∗∗ −2.181∗∗∗ −2.798∗∗∗

(0.370) (0.347) (0.315)

Observations 31,972 38,392 44,132

Adjusted R2 0.446 0.430 0.505

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: OLS regression results for the baseline gravity model for male migration

flows. 16



6 ANNEX

log(da min open) log(da min closed) log(da pb closed)

(1) (2) (3)

log(POPo) 0.704∗∗∗ 0.588∗∗∗ 0.576∗∗∗

(0.009) (0.009) (0.007)

log(POPd) 0.438∗∗∗ 0.421∗∗∗ 0.555∗∗∗

(0.009) (0.009) (0.007)

log(dist) −1.371∗∗∗ −1.242∗∗∗ −1.658∗∗∗

(0.013) (0.013) (0.011)

log(PSRo) 0.289∗∗∗ 0.497∗∗∗ 0.164∗∗∗

(0.024) (0.023) (0.018)

log(PSRd) 0.211∗∗∗ 0.421∗∗∗ 0.088∗∗∗

(0.023) (0.024) (0.017)

log(IMRo) −0.222∗∗∗ −0.268∗∗∗ −0.761∗∗∗

(0.018) (0.018) (0.014)

log(IMRd) −1.205∗∗∗ −1.222∗∗∗ −1.278∗∗∗

(0.018) (0.019) (0.014)

log(URBo) 0.299∗∗∗ 0.007 −0.028

(0.028) (0.029) (0.023)

log(URBd) 0.489∗∗∗ 0.308∗∗∗ 0.312∗∗∗

(0.031) (0.032) (0.023)

log(LAo) 0.032∗∗∗ 0.100∗∗∗ 0.198∗∗∗

(0.008) (0.008) (0.006)

log(LAd) 0.228∗∗∗ 0.244∗∗∗ 0.226∗∗∗

(0.007) (0.008) (0.006)

LB 1.150∗∗∗ 1.191∗∗∗ 2.025∗∗∗

(0.065) (0.071) (0.059)

OL 1.750∗∗∗ 1.659∗∗∗ 2.025∗∗∗

(0.030) (0.031) (0.024)

COL 1.514∗∗∗ 1.697∗∗∗ 2.561∗∗∗

(0.078) (0.085) (0.071)

t −0.051∗∗∗ −0.054∗∗∗ −0.073∗∗∗

(0.003) (0.003) (0.002)

t2 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0003) (0.0003) (0.0002)

Constant −1.564∗∗∗ −2.945∗∗∗ 7.033∗∗∗

(0.351) (0.360) (0.279)

Observations 68,526 71,565 115,280

Adjusted R2 0.481 0.430 0.522

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: OLS regression results for the baseline gravity model for male migration

flows (cont’d). 17



6 ANNEX

log(sd drop neg) log(sd rev neg) log(mig rate)

(1) (2) (3)

log(POPo) 0.530∗∗∗ 0.540∗∗∗ 0.560∗∗∗

(0.010) (0.009) (0.009)

log(POPd) 0.574∗∗∗ 0.492∗∗∗ 0.551∗∗∗

(0.010) (0.010) (0.009)

log(dist) −0.918∗∗∗ −0.970∗∗∗ −1.047∗∗∗

(0.014) (0.013) (0.012)

log(PSRo) −0.199∗∗∗ −0.094∗∗∗ −0.465∗∗∗

(0.027) (0.026) (0.024)

log(PSRd) 0.831∗∗∗ 0.365∗∗∗ 0.711∗∗∗

(0.030) (0.027) (0.027)

log(IMRo) −0.034∗ −0.078∗∗∗ −0.118∗∗∗

(0.020) (0.019) (0.017)

log(IMRd) −1.118∗∗∗ −0.864∗∗∗ −0.906∗∗∗

(0.022) (0.020) (0.019)

log(URBo) −0.044 0.101∗∗∗ 0.051∗

(0.031) (0.030) (0.028)

log(URBd) 0.250∗∗∗ 0.154∗∗∗ 0.324∗∗∗

(0.042) (0.036) (0.034)

log(LAo) −0.019∗∗ −0.004 −0.013∗

(0.008) (0.008) (0.007)

log(LAd) 0.116∗∗∗ 0.116∗∗∗ 0.151∗∗∗

(0.008) (0.008) (0.007)

LB 1.411∗∗∗ 1.577∗∗∗ 1.706∗∗∗

(0.058) (0.053) (0.048)

OL 1.525∗∗∗ 1.433∗∗∗ 1.697∗∗∗

(0.031) (0.029) (0.027)

COL 1.178∗∗∗ 1.320∗∗∗ 1.462∗∗∗

(0.065) (0.064) (0.057)

t −0.060∗∗∗ −0.065∗∗∗ −0.024∗∗∗

(0.003) (0.003) (0.003)

t2 −0.001∗∗∗ −0.002∗∗∗ 0.001∗∗∗

(0.0003) (0.0003) (0.0002)

Constant −3.794∗∗∗ −0.256 −0.563∗

(0.374) (0.351) (0.325)

Observations 31,423 37,933 43,658

Adjusted R2 0.451 0.435 0.490

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: OLS regression results for the baseline gravity model for female migration

flows. 18



6 ANNEX

log(da min open) log(da min closed) log(da pb closed)

(1) (2) (3)

log(POPo) 0.698∗∗∗ 0.626∗∗∗ 0.612∗∗∗

(0.009) (0.009) (0.007)

log(POPd) 0.482∗∗∗ 0.409∗∗∗ 0.517∗∗∗

(0.009) (0.009) (0.007)

log(dist) −1.357∗∗∗ −1.277∗∗∗ −1.610∗∗∗

(0.013) (0.013) (0.011)

log(PSRo) 0.176∗∗∗ 0.430∗∗∗ 0.119∗∗∗

(0.024) (0.022) (0.018)

log(PSRd) 0.008 0.079∗∗∗ −0.277∗∗∗

(0.023) (0.025) (0.018)

log(IMRo) −0.183∗∗∗ −0.240∗∗∗ −0.795∗∗∗

(0.018) (0.018) (0.014)

log(IMRd) −1.228∗∗∗ −1.227∗∗∗ −1.214∗∗∗

(0.018) (0.019) (0.014)

log(URBo) 0.382∗∗∗ 0.131∗∗∗ −0.031

(0.028) (0.029) (0.023)

log(URBd) 0.438∗∗∗ 0.124∗∗∗ 0.191∗∗∗

(0.031) (0.032) (0.023)

log(LAo) 0.003 0.049∗∗∗ 0.168∗∗∗

(0.008) (0.008) (0.006)

log(LAd) 0.200∗∗∗ 0.262∗∗∗ 0.250∗∗∗

(0.008) (0.008) (0.006)

LB 1.248∗∗∗ 1.280∗∗∗ 2.209∗∗∗

(0.066) (0.071) (0.058)

OL 1.779∗∗∗ 1.789∗∗∗ 2.095∗∗∗

(0.030) (0.031) (0.024)

COL 1.532∗∗∗ 1.708∗∗∗ 2.568∗∗∗

(0.078) (0.084) (0.070)

t −0.043∗∗∗ −0.058∗∗∗ −0.078∗∗∗

(0.003) (0.003) (0.002)

t2 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0003) (0.0003) (0.0002)

Constant 0.167 0.338 9.479∗∗∗

(0.353) (0.359) (0.281)

Observations 67,835 70,268 111,796

Adjusted R2 0.486 0.444 0.527

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: OLS regression results for the baseline gravity model for female migration

flows (cont’d). 19
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